Skip to main content
Log in

Random Walk Methods for Modeling Hydrodynamic Transport in Porous and Fractured Media from Pore to Reservoir Scale

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Random walk (RW) methods are recurring Monte Carlo methods used to model convective and diffusive transport in complex heterogeneous media. Many applications can be found, including fluid mechanic, hydrology and chemical reactors modeling. These methods are easy to implement, very versatile and flexible enough to become appealing for many applications because they generally overlook or deeply simplify the building of explicit complex meshes required by deterministic methods. RW provides a good physical understanding of the interactions between the space scales of heterogeneities and the transport phenomena under consideration. In addition, they can result in efficient upscaling methods, especially in the context of flow and transport in fractured media. In the present study, we review the applications of RW to several situations that cope with diverse spatial scales and different insights into upscaling problems. The advantages and downsides of RW are also discussed, thus providing a few avenues for further works and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. To simplify notations, functions with “s” variables correspond to Laplace transforms throughout the rest of the paper.

References

  • Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B., et al.: The ensemble Kalman filter in reservoir engineering—a review. Spe J. 14(03), 393–412 (2009)

    Article  Google Scholar 

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1972)

    Google Scholar 

  • Acuna, J.A., Yortsos, Y.C.: Application of fractal geometry to the study of networks of fractures and their pressure transient. Water Resour. Res. 31(3), 527–540 (1995). doi:10.1029/94WR02260

    Article  Google Scholar 

  • Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogeneization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990)

    Article  Google Scholar 

  • Aris, R.: On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 235, 67–77 (1956). doi:10.1098/rspa.1956.0065

    Article  Google Scholar 

  • Babey, T., de Dreuzy, J.-R., Casenave, C.: Multi-rate mass transfer (MRMT) models for general diffusive porosity structures. Adv. Water Res. 76, 146–156 (2015). doi:10.1016/j.advwatres.2014.12.006

    Article  Google Scholar 

  • Barenblatt, G.I., Zheltov, Y.P.: Fundamental equations of homogeneous liquids in fissured rocks. Dokl Akad Nauk SSSR 132(3), 545–548 (1960)

    Google Scholar 

  • Barkai, E., Garini, Y., Metzler, R.: Strange kinetics of single molecules in living cells. Phys. Today 65(8), 29–35 (2012). doi:10.1063/PT.3.1677

    Article  Google Scholar 

  • Barker, J.A.: A generalized radial flow model for hydraulic tests in fractured rock. Water Resour. Res. 24(10), 1796–1804 (1988). doi:10.1029/WR024i010p01796

    Article  Google Scholar 

  • Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A Lévy flight for light. Nature 453(7194), 495–498 (2008). doi:10.1038/nature06948

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, Mineola (1973)

    Google Scholar 

  • Beaudoin, A., de Dreuzy, J.R.: Numerical assessment of 3-D macrodispersion in heterogeneous porous media. Water Resour. Res. 49(5), 2489–2496 (2013). doi:10.1002/wrcr.20206

    Article  Google Scholar 

  • Beaudoin, A., Huberson, S., Rivoalen, E.: Anisotropic particle method. C. R. Mec. 330(1), 51–56 (2002). doi:10.1016/S1631-0721(02)01429-8

    Article  Google Scholar 

  • Beaudoin, A., Huberson, S., Rivoalen, E.: Simulation of anisotropic diffusion by means of a diffusion velocity method. J. Comput. Phys. 186(1), 122–135 (2003). doi:10.1016/S0021-991(03)00024-X

    Article  Google Scholar 

  • Beaudoin, A., de Dreuzy, J.R., Erhel, J.: An efficient parallel tracker for advection-diffusion simulations in heterogeneous porous media. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Europar, pp. 28–31. Springer, Heidelberg (2007)

  • Beaudoin, A., de Dreuzy, J.R., Erhel, J.: Numerical Monte Carlo analysis of the influence of pore-scale dispersion on macrodispersion in 2-D heterogeneous porous media. Water Resour. Res. 46, 12 (2010). doi:10.1029/2010WR009576

    Article  Google Scholar 

  • Bechtold, M., Vanderborght, J., Ippisch, O., Vereecken, H.: Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents. Water Resour. Res. 47, 10 (2011). doi:10.1029/2010WR010267

    Article  Google Scholar 

  • Becker, M.W., Shapiro, A.M.: Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock. Water Resour. Res. 39(1), 1024 (2003). doi:10.1029/2001WR001190

    Article  Google Scholar 

  • Bel, G., Barkai, E.: Weak ergodicity breaking in the continuous-time random walk. Phys. Rev. Lett. 94(240), 602 (2005). doi:10.1103/PhysRevLett.94.240602

  • Berkowitz, B., Balberg, I.: Percolation theory and its application to groundwater hydrology. Water Resour. Res. 29(4), 775–794 (1993). doi:10.1029/92WR02707

    Article  Google Scholar 

  • Berkowitz, B., Scher, H.: Anomalous transport in random fracture networks. Phys. Rev. Lett. 79(20), 4038–4041 (1997). doi:10.1103/PhysRevLett.79.4038

  • Berkowitz, B., Scher, H.: Theory of anomalous chemical transport in random fracture networks. Phys. Rev. E 57(5), 5858–5869 (1998). doi:10.1103/PhysRevE.57.5858

    Article  Google Scholar 

  • Berkowitz, B., Naumann, C., Smith, L.: Mass-transfer at fracture intersections - An evaluation of mixing models. Water Resour. Res. 30(6), 1765–1773 (1994). doi:10.1029/94WR00432

    Article  Google Scholar 

  • Berkowitz, B., Scher, H., Silliman, S.: Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36(1), 149–158 (2000). doi:10.1029/1999WR900295

    Article  Google Scholar 

  • Berkowitz, B., Klafter, J., Metzler, R., Scher, H.: Physical pictures of transport in heterogeneous media: advection-dispersion, random-walk, and fractional derivative formulations. Water Resour. Res. 38(10), 1191 (2002). doi:10.1029/2001WR001030

    Article  Google Scholar 

  • Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44(2), RG2003 (2006). doi:10.1029/2005RG000178

    Article  Google Scholar 

  • Besnard, K., de Dreuzy, J.R., Davy, P., Aquilina, L.: A modified Lagrangian-volumes method to simulate nonlinearly and kinetically sorbing solute transport in heterogeneous porous media. J. Contam. Hydrol. 120–21(SI), 89–98 (2011). doi:10.1016/j.jconhyd.2010.03.004

    Article  Google Scholar 

  • Bijeljic, B., Mostaghimi, P., Blunt, M.: Insights into non-Fickian solute transport in carbonates. Water Resour. Res. 49(5), 2714–2728 (2013a)

    Article  Google Scholar 

  • Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.: Predictions of non-fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E 87(1), 013011 (2013b). doi:10.1103/PhysRevE.87.013011

    Article  Google Scholar 

  • Boano, F., Packman, A.I., Cortis, A., Revelli, R., Ridolfi, L.: A continuous time random walk approach to the stream transport of solutes. Water Resour. Res. 43(10) (2007). doi:10.1029/2007WR006062

  • Bodin, J.: From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms. Water Resour. Res. 51(3), 1860–1871 (2015). doi:10.1002/2014WR015910

    Article  Google Scholar 

  • Bodin, J., Porel, G., Delay, F.: Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett. 208(3–4), 297–304 (2003). doi:10.1016/S0012-821X(03)00052-9

    Article  Google Scholar 

  • Bodin, J., Porel, G., Delay, F., Ubertosi, F., Bernard, S., de Dreuzy, J.R.: Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program. J. Contam. Hydrol. 89(1–2), 1–28 (2007). doi:10.1016/j.jconhyd.2006.07.005

    Article  Google Scholar 

  • Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195(4–5), 127–293 (1990). doi:10.1016/0370-1573(90)90099-N

    Article  Google Scholar 

  • Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  Google Scholar 

  • Bromly, M., Hinz, C.: Non-Fickian transport in homogeneous unsaturated repacked sand. Water Resour. Res. 40(7) (2004). doi:10.1029/2003WR002579

  • Bruderer, C., Bernabé, Y.: Network modeling of dispersion: transition from Taylor dispersion in homogeneous networks to mechanical dispersion in very heterogeneous ones. Water Resour. Res. 37(4), 897–908 (2001). doi:10.1029/2000WR900362

    Article  Google Scholar 

  • Cacas, M.C., Ledoux, E., de Marsily, G., Barbreau, A., Calmels, P., Gaillard, B., Margritta, R.: Modeling fracture flow with a stochastic discrete network: calibration and validation. 2. The transport model. Water Resour. Res. 26(3), 491–500 (1990). doi:10.1029/WR026i003p00491

    Google Scholar 

  • Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimera, J.: On matrix diffusion: formulations, solution methods and qualitative effects. Hydrogeol. J. 6(1), 178–190 (1998). doi:10.1007/s100400050143

    Article  Google Scholar 

  • Carslaw, H.S., Jaeger, J.C.: Conduction of heat in solids. Oxford science publications, Clarendon Press, Oxford (1986)

    Google Scholar 

  • Chang, J., Yortsos, Y.C.: Pressure transient analysis of fractal reservoirs. SPE Form. Eval. 5(1) (1990). doi:10.2118/18170-PA

  • Charlaix, E., Guyon, E., Roux, S.: Permeability of a random array of fractures of widely varying apertures. Transp. Porous Media 2(1), 31–43 (1987)

    Article  Google Scholar 

  • Chavent, G., Roberts, J.E.: A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems. Adv. Water Res. 14(6), 329–348 (1991). doi:10.1016/0309-1708(91)90020-O

    Article  Google Scholar 

  • Chen, Z.X.: Transient Flow of Slightly Compressible Fluids Through Double-porosity, Double-permeability systems–A state-of-the-art review. Transp. Porous Media 4(2), 147–184 (1989). doi:10.1007/BF00134995

    Article  Google Scholar 

  • Cirpka, O.A.: Effects of sorption on transverse mixing in transient flows. J. Contam. Hydrol. 78(3), 207–229 (2005). doi:10.1016/j.jconhyd.2005.05.008

    Article  Google Scholar 

  • Cordes, C., Kinzelbach, W.: Continuous groundwater velocity field and path lines in linear, bilinear and trilinear finite elements. Water Resour. Res. 28(11), 2903–2911 (1992). doi:10.1029/92WR01686

    Article  Google Scholar 

  • Cordes, C., Kinzelbach, W.: Comment on “Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity?”. Water Resour. Res. 32(6), 1905–1911 (1996). doi:10.1029/96WR00567

    Article  Google Scholar 

  • Cortis, A., Berkowitz, B.: Anomalous transport in “classical” soil and sand columns. Soil Sci. Soc. Am. J. 68(5), 1539–1548 (2004)

    Article  Google Scholar 

  • Cortis, A., Ghezzehei, T.A.: On the transport of emulsions in porous media. J. Colloid Interface Sci. 313(1), 1–4 (2007). doi:10.1016/j.jcis.2007.04.021

    Article  Google Scholar 

  • Cortis, A., Knudby, C.: A continuous time random walk approach to transient flow in heterogeneous porous media. Water Resour. Res. (2006). doi:10.1029/2006WR005227

    Google Scholar 

  • Cvetkovic, V., Frampton, A.: Solute transport and retention in three-dimensional fracture networks. Water Resour. Res. (2012). doi:10.1029/2011WR011086

    Google Scholar 

  • Cvetkovic, V., Painter, S., Outters, N., Selroos, J.O.: Stochastic simulation of radionuclide migration in discretely fractured rock near the Äspö Hard Rock Laboratory. Water Resour. Res. (2004). doi:10.1029/2003WR002655

    Google Scholar 

  • Dagan, G.: Flow and Transport in Porous Formations. Springer, Berlin (1989)

    Book  Google Scholar 

  • Danckwerts, P.V.: The definition and measurements of some characteristics of mixtures. Appl. Sci. Res. 3(4), 279–296 (1952)

    Google Scholar 

  • Daviau, F.: Interprétation des essais de puits, les méthodes nouvelles, technip edn. Publications de l’institut francais du pétrole, Paris (1986)

    Google Scholar 

  • de Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A., Bolster, D., Davy, P.: Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110(18), 184502 (2013). doi:10.1103/PhysRevLett.110.184502

  • de Arcangelis, L., Koplik, J., Redner, S., Wilkinson, D.: Hydrodynamic dispersion in network models of porous media. Phys. Rev. Lett. 57(8), 986–999 (1986). doi:10.1103/PhysRevLett.57.996

  • de Simoni, M., Carrera, J., Sanchez-Vila, X., Guadagnini, A.: A procedure for the solution of multicomponent reactive transport problems. Water Resour. Res. 41(11), (2005). doi:10.1029/2005WR004056

  • de Swaan, A.: Analytic solutions for determining naturally fractured reservoir properties by well testing. SPE J. 16(3), 117–22 (1976)

    Article  Google Scholar 

  • de Swann, A., Ramirez-Villa, M.: Functions of flow from porous rock blocks. J. Petrol. Sci. Eng. 9(1), 39–48 (1993). doi:10.1016/0920-4105(93)90027-C

    Article  Google Scholar 

  • Delay, F., Bodin, J.: Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fractured networks. Geophys. Res. Lett. 28(21), 4051–4054 (2001). doi:10.1029/2001GL013698

    Article  Google Scholar 

  • Delay, F., Porel, G., Sardini, P.: Modelling diffusion in a heterogeneous rock matrix with a time-domain Lagrangian method and an inversion procedure. C. R. Geosci. 334(13), 967–973 (2002). doi:10.1016/S1631-0713(02)01835-7

    Article  Google Scholar 

  • Delay, F., Ackerer, P., Danquigny, C.: Simulating solute transport in porous or fractured formations using random walk particle tracking: a review. Vadose Zone J. 4(2), 360–379 (2005). doi:10.2136/vzj2004.0125

    Article  Google Scholar 

  • Delorme, M., Daniel, J.M., Kada-Kloucha, C., Khvoenkova, N., Schueller, S., Souque, C.: An efficient model to simulate reservoir stimulation and induced microseismic events on 3D discrete fracture network for unconventional reservoirs. In: Unconventional Resources Technology Conference, 12–14 August, Denver, Colorado, USA, pp 1433–1442, doi:10.1190/URTEC2013-146 (2013a)

  • Delorme, M., Mota, R.O., Khvoenkova, N., Fourno, A., Noetinger, B.: A methodology to characterize fractured reservoirs constrained by statistical geological analysis and production: a real field case study. Geol. Soc. Lond. Special Publ. 374(1), 273–288 (2013b)

    Article  Google Scholar 

  • Dentz, M., Cortis, A., Scher, H., Berkowitz, B.: Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27(2), 155–173 (2004). doi:10.1016/j.advwatres.2003.11.002

    Article  Google Scholar 

  • Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120–21(SI), 1–17 (2011). doi:10.1016/j.jconhyd.2010.05.002

    Article  Google Scholar 

  • Dentz, M., Gouze, P., Russian, A., Dweik, J., Delay, F.: Diffusion and trapping in heterogeneous media: an inhomogeneous continuous time random walk approach. Adv. Water Resour. 49, 13–22 (2012). doi:10.1016/j.advwatres.2012.07.015

    Article  Google Scholar 

  • Dentz, M., Russian, A., Gouze, P.: Self-averaging and ergodicity of subdiffusion in quenched random media. Phys. Rev. E 93(1), 010101 (2016)

  • Dershowitz, W., Miller, I.: Dual porosity fracture flow and transport. Geophys. Res. Lett. 22(11), 1441–1444 (1995). doi:10.1029/95GL01099

    Article  Google Scholar 

  • de Dreuzy, J.R., Davy, P., Berkowitz, B.: Advective transport in the percolation backbone in two dimensions. Phys. Rev. E 64(5), 1–4 (2001)

  • de Dreuzy, J.R., Beaudoin, A., Erhel, J.: Asymptotic dispersion in 2D heterogeneous porous media determined by parallel numerical simulations. Water Resour. Res. (2007). doi:10.1029/2006WR005394

    Google Scholar 

  • de Dreuzy, J.R., Carrera, J., Dentz, M., Le Borgne, T.: Time evolution of mixing in heterogeneous porous media. Water Resour. Res. (2012). doi:10.1029/2011WR011360

    Google Scholar 

  • de Dreuzy, J.R., Rapaport, A., Babey, T., Harmand, J.: Influence of porosity structures on mixing-induced reactivity at chemical equilibrium in mobile/immobile Multi-Rate Mass Transfer (MRMT) and Multiple INteracting Continua (MINC) models. Water Resour. Res. 49(12), 8511–8530 (2013). doi:10.1002/2013WR013808

    Article  Google Scholar 

  • Edery, Y., Guadagnini, A., Scher, H., Berkowitz, B.: Origins of anomalous transport in heterogeneous media: Structural and dynamic controls. Water Resour. Res. 50(2), 1490–1505 (2014). doi:10.1002/2013WR015111

    Article  Google Scholar 

  • Einstein, A.: Investigations on the theory of the Brownian movement. Dover Publication, New York (1956)

    Google Scholar 

  • Emmanuel, S., Berkowitz, B.: Continuous time random walks and heat transfer in porous media. Transp. Porous Media 67(3), 413–430 (2007). doi:10.1007/s11242-006-9033-z

    Article  Google Scholar 

  • Evensen, G.: Data assimilation: the ensemble Kalman filter. Springer, Berlin (2009)

    Book  Google Scholar 

  • Fernàndez-Garcia, D., Sanchez-Vila, X.: Optimal reconstruction of concentrations, gradients and reaction rates from particle distributions. J. Contam. Hydrol. 120, 99–114 (2011)

  • Fleury, M., Bauer, D., Néel, M.: Modeling of super-dispersion in unsaturated porous media using NMR propagators. Microporous Mesoporous Mater. 205, 75–78 (2015)

    Article  Google Scholar 

  • Geiger, S., Cortis, A., Birkholzer, J.T.: Upscaling solute transport in naturally fractured porous media with the continuous time random walk method. Water Resour. Res. 46, 1–13 (2010). doi:10.1029/2010WR009133

  • Gjetvaj, F., Russian, A., Gouze, P., Dentz, M.: Dual control of flow field heterogeneity and immobile porosity on non-Fickian transport in Berea sandstone. Water Resour. Res. 51(10), 8273–8293 (2015). doi:10.1002/2015WR017645

    Article  Google Scholar 

  • Gouze, P., Luquot, L.: X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution. J. Contam. Hydrol. 120–21(SI), 45–55 (2011). doi:10.1016/j.jconhyd.2010.07.004

    Article  Google Scholar 

  • Gouze, P., Le Borgne T., Leprovost, R., Lods, G., Poidras, T., Pezard, P.: Non-Fickian dispersion in porous media: 1. Multiscale measurements using single-well injection withdrawal tracer tests. Water Resour. Res. (2008a). doi:10.1029/2007WR006278

  • Gouze, P., Melean, Y., Le Borgne, T., Dentz, M., Carrera, J.: Non-fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion. Water Resour. Res. (2008b). doi:10.1029/2007WR006690

    Google Scholar 

  • Guillon, V., Fleury, M., Bauer, D., Néel, M.C.: Superdispersion in homogeneous unsaturated porous media using NMR propagators. Phys. Rev. E (2013). doi:10.1103/PhysRevE.87.043007

    Google Scholar 

  • Guillon, V., Bauer, D., Fleury, M., Néel, M.C.: Computing the longtime behaviour of NMR propagators in porous media using a pore network random walk model. Transp. Porous Media 101(2), 251–267 (2014). doi:10.1007/s11242-013-0243-x

    Article  Google Scholar 

  • Haggerty, R., Gorelick, S.M.: Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour. Res. 31(10), 2383–2400 (1995). doi:10.1029/95WR01583

    Article  Google Scholar 

  • Haggerty, R., McKenna, S.A., Meigs, L.C.: On the late time behavior of tracer test breakthrough curves. Water Resour. Res. 36(12), 3467–3479 (2000). doi:10.1029/2000WR900214

    Article  Google Scholar 

  • Hatano, Y., Hatano, N.: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour. Res. 34(5), 1027–1033 (1998). doi:10.1029/98WR00214

    Article  Google Scholar 

  • He, Y., Burov, S., Metzler, R., Barkai, E.: Random time-scale invariant diffusion and transport coefficients. Phys. Rev. Lett. (2008). doi:10.1103/PhysRevLett.101.058101

  • Herrera, P.A., Beckie, R.D.: An assessment of particle methods for approximating anisotropic dispersion. Int. J. Numer. Methods Fluids 71(5), 634–651 (2013). doi:10.1002/fld.3676

    Article  Google Scholar 

  • Herrera, P.A., Massabo, M., Beckie, R.D.: A meshless method to simulate solute transport in heterogeneous porous media. Adv. Water Resour. 32(3), 413–429 (2009). doi:10.1016/j.advwatres.2008.12.005

    Article  Google Scholar 

  • Herrera, P.A., Valocchi, A.J., Beckie, R.D.: A multidimensional streamline-based method to simulate reactive solute transport in heterogeneous porous media. Adv. Water Resour. 33(7), 711–727 (2010). doi:10.1016/j.advwatres.2010.03.001

    Article  Google Scholar 

  • Holzner, M., Morales, V.L., Willmann, M., Dentz, M.: Intermittent lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E (2015). doi:10.1103/PhysRevE.92.013015

    Google Scholar 

  • Hoteit, H., Erhel, J., Mos, R., Philippe, B., Ackerer, P.: Numerical reliability for mixed methods applied to flow problems in porous media. Comput. Geosci. 6(2), 161–194 (2002a). doi:10.1023/A:1019988901420

    Article  Google Scholar 

  • Hoteit, H., Mose, R., Younes, A., Lehmann, F., Ackerer, P.: Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods. Math. Geol. 34(4), 435–456 (2002b). doi:10.1023/A:1015083111971

    Article  Google Scholar 

  • Hu, L.Y.: Gradual deformation and iterative calibration of Gaussian-related stochastic models. Math. Geol. 32(1), 87–108 (2000)

    Article  Google Scholar 

  • Jimenez-Hornero, F., Giraldez, J., Laguna, A., Pachepsky, Y.: Continuous time random walks for analyzing the transport of a passive tracer in a single fissure. Water Resour. Res. (2005). doi:10.1029/2004WR003852

    Google Scholar 

  • Kang, P.K., Dentz, M., Le Borgne, T., Juanes, R.: Spatial Markov model of anomalous transport through random lattice networks. Phys. Rev. Lett. (2011). doi:10.1103/PhysRevLett.107.180602

  • Kang, P.K., de Anna, P., Nunes, J.P., Bijeljic, B., Blunt, M., Juanes, R.: Pore-scale intermittent velocity structure underpinning anomalous transport through 3D porous media. Geophys. Res. Lett. 41(17), 6184–6190 (2014). doi:10.1002/2014GL061475

    Article  Google Scholar 

  • Kang, P.K., Le Borgne, T., Dentz, T., Bour, O., Juanes, R.: Impact of velocity correlation and distribution on transport in fractured media: field evidence and theoretical model. Water Resour. Res. 51(2), 940–959 (2015). doi:10.1002/2014WR015799

    Article  Google Scholar 

  • Kenkre, V.M., Montroll, E.W., Shlesinger, M.F.: Generalized master equations for continuous-time random walks. J. Stat. Phys. 9(1), 45–50 (1973)

    Article  Google Scholar 

  • Khvoenkova, N., Delorme, M.: An optimal method to model transient flows in 3D discrete fracture network. IAMG Conf. 2011, 1238–1249 (2011). doi:10.5242/iamg.2011.0088

    Google Scholar 

  • Kim, I.C., Torquato, S.: Effective conductivity of suspensions of overlapping spheres. J. Appl. Phys. 71(6), 2727–2735 (1992). doi:10.1063/1.351046

    Article  Google Scholar 

  • Kinzelbach, W.: The random walk method in pollutant transport simulation. In: Groundwater flow and quality modelling, Springer, Berlin, pp 227–245 (1988)

  • Kinzelbach, W., Uffink, G.: The random walk method and extensions in groundwater modelling. Processes in Porous Media, vol. Transport. Springer, Netherlands (1991)

    Google Scholar 

  • Kitanidis, P.: The concept of the dilution index. Water Resour. Res. 30(7), 2011–2026 (1994). doi:10.1029/94WR00762

    Article  Google Scholar 

  • Klafter, J., Silbey, R.: Derivation of the continuous-time random-walk equation. Phys. Rev. Lett. 44(2), 55–58 (1980). doi:10.1103/PhysRevLett.44.55

  • Klafter, J., Sokolov, I.: Anomalous diffusion spreads its wings. Phys. World 18(8), 29–32 (2005)

    Article  Google Scholar 

  • Koplik, J., Redner, S., Wilkinson, D.: Transport and dispersion in random networks with percolation disorder. Phys. Rev. A 37(7), 2619–2636 (1988). doi:10.1103/PhysRevA.37.2619

    Article  Google Scholar 

  • Kosakowski, G.: Anomalous transport of colloids and solutes in a shear zone. J. Contam. Hydrol. 72(1–4), 23–46 (2004). doi:10.1016/j.jconhyd.2003.10.005

    Article  Google Scholar 

  • Kosakowski, G., Berkowitz, B.: Flow pattern variability in natural fracture intersections. Geophys. Res. Lett. 26(12), 1765–1768 (1999). doi:10.1029/1999GL900344

    Article  Google Scholar 

  • Kosakowski, G., Berkowitz, B., Scher, H.: Analysis of field observations of tracer transport in a fractured till. J. Contam. Hydrol. 47(1), 29–51 (2001). doi:10.1016/S0169-7722(00)00140-6

    Article  Google Scholar 

  • LaBolle, E.M., Quastel, J., Fogg, G.E.: Diffusion theory for transport in porous media: transition-probability densities of diffusion processes corresponding to advection-dispersion equations. Water Resour. Res. 34(7), 1685–1693 (1998)

    Article  Google Scholar 

  • Landereau, P., Noetinger, B., Quintard, M.: Quasi-steady two-equation models for diffusive transport in fractured porous media: large-scale properties for densely fractured systems. Adv. Water Resour. 24(8), 863–876 (2001). doi:10.1016/S0309-1708(01)00015-X

    Article  Google Scholar 

  • Le Borgne, T., Gouze, P.: Non-fickian dispersion in porous media: 2. Model validation from measurements at different scales. Water Resour. Res. (2008). doi:10.1029/2007WR006279

    Google Scholar 

  • Le Borgne, T., Dentz, M., Carrera, J.: A Lagrangian statistical model for transport in highly heterogeneous velocity fields. Phys. Rev. Lett. (2008a). doi:10.1103/PhysRevLett.101.090601

  • Le Borgne, T., Dentz, M., Carrera, J.: Spatial Markov processes for modeling lagrangian particle dynamics in heterogeneous porous media. Phys. Rev. E (2008b). doi:10.1103/PhysRevE.78.026308

    Google Scholar 

  • Le Borgne, T., Dentz, M., Bolster, D., Carrera, J., de Dreuzy, J.R., Davy, P.: Non-fickian mixing: Temporal evolution of the scalar dissipation rate in heterogeneous porous media. Adv. Water Resour. 33(12), 1468–1475 (2010). doi:10.1016/j.advwatres.2010.08.006

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Davy, P., Bolster, D., Carrera, J., de Dreuzy, J.R., Bour, O.: Persistence of incomplete mixing: a key to anomalous transport. Phys. Rev. E (2011). doi:10.1103/PhysRevE.84.015301

    Google Scholar 

  • Le Borgne, T., Dentz, M., Villermaux, E.: Stretching, coalescence and mixing in porous media. Phys. Rev. Lett. (2013). doi:10.1103/PhysRevLett.110.204501

  • Le Borgne, T., Dentz, M., Villermaux, E.: The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458–498 (2015). doi:10.1017/jfm.2015.117

    Article  Google Scholar 

  • Lejay, A., Pichot, G.: Simulating diffusion processes in discontinuous media: benchmark tests. J. Comput. Phys. 314, 384–413 (2016)

    Article  Google Scholar 

  • Leray, S., de Dreuzy, J.R., Aquilina, L., Vergnaud-Ayraud, V., Labasque, T., Bour, O., Le Borgne, T.: Temporal evolution of age data under transient pumping conditions. J. Hydrol. 511, 555–566 (2014). doi:10.1016/j.jhydrol.2014.01.064

    Article  Google Scholar 

  • Liu, H., Zhang, Y., Zhou, Q., Molz, F.: An interpretation of potential scale dependence of the effective matrix diffusion coefficient. J. Contam. Hydrol. 90(1–2), 41–57 (2007). doi:10.1016/j.jconhyd.2006.09.006

    Article  Google Scholar 

  • Liu, H.H., Bodvarsson, G.S., Pan, L.: Determination of particle transfer in random walk particle methods for fractured porous media. Water Resour. Res. 36(3), 707–713 (2000). doi:10.1029/1999WR900323

    Article  Google Scholar 

  • Maier, U., Bürger, C.M.: An accurate method for transient particle tracking. Water Resour. Res. 49(5), 3059–3063 (2013)

    Article  Google Scholar 

  • Matheron, G., de Marsily, G.: Is transport in porous media always diffusive? A counterexample. Water Resour. Res. 16(5), 901–917 (1980). doi:10.1029/WR016i005p00901

    Article  Google Scholar 

  • McCarthy, J.F.: Effective permeability of sandstone-shale reservoirs by a random walk method. J. Phys. A Math. General 23(9), L445 (1990)

    Article  Google Scholar 

  • McCarthy, J.F.: Analytical models of the effective permeability of sand-shale reservoirs. Geophys. J. Int. 105(2), 513–527 (1991). doi:10.1111/j.1365-246X.1991.tb06730.x

    Article  Google Scholar 

  • McCarthy, J.F.: Continuous-time random walks on random media. J. Phys. A Math. Gen. 26(11), 2495–2503 (1993a). doi:10.1088/0305-4470/26/11/004

    Article  Google Scholar 

  • McCarthy, J.F.:P Reservoir characterization : efficient random-walk methods for upscaling and image selection. In: SPE Asia Pacific Oil and Gas Conference, 8–10 February, Singapore 25334 (1993b)

  • Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000). doi:10.1016/S0370-1573(00)00070-3

    Article  Google Scholar 

  • Metzler, R., Glockle, W.G., Nonnenmacher, T.F.: Fractional model equation for anomalous diffusion. Phys. A Stat. Mech. Appl. 211(1), 13–24 (1994). doi:10.1016/0378-4371(94)90064-7

    Article  Google Scholar 

  • Metzler, R., Jeon, J.H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16(44), 24128–24164 (2014). doi:10.1039/c4cp03465a

    Article  Google Scholar 

  • Michalak, A.M., Kitanidis, P.K.: Macroscopic behavior and random-walk particle tracking of kinetically sorbing solutes. Water Resour. Res. 36(8), 2133–2146 (2000). doi:10.1029/2000WR900109

    Article  Google Scholar 

  • Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1759 (2005). doi:10.1088/0034-4885/68/8/R01

    Article  Google Scholar 

  • Mosé, R., Siegel, P., Ackerer, P., Chavent, G.: Application of the mixed hybrid finite element approximation in a groundwater model: Luxury or necessity? Water Resour. Res. 30(11), 3001–3012 (1994). doi:10.1029/94WR01786

    Article  Google Scholar 

  • Narasimhan, T.N., Pruess, K.z: MINC: An approach for analyzing transport in strongly heterogeneous systems. In: Flow, G., Modeling, Q. (eds.) Springer Netherlands, 224, pp 375–391 (1988)

  • Néel, M.C., Rakotonasyl, S.H., Bauer, D., Joelson, M., Fleury, M.: All order moments and other functionals of the increments of some non-markovian processes. J. Stat. Mech. Theory Experiment (2011). doi:10.1088/1742-5468/2011/02/P02006

    Google Scholar 

  • Néel, M.C., Bauer, D., Fleury, M.: Model to interpret pulsed-field-gradient NMR data including memory and superdispersion effects. Phys. Rev. E (2014). doi:10.1103/PhysRevE.89.062121

    Google Scholar 

  • Noetinger, B.: An explicit formula for computing the sensitivity of the effective conductivity of heterogeneous composite materials to local inclusion transport properties and geometry. SIAM Multiscale Model. Simul. 11(3), 907–924 (2013). doi:10.1137/120884961

    Article  Google Scholar 

  • Noetinger, B.: A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow. J. Comput. Phys. 283, 205–223 (2015). doi:10.1016/j.jcp.2014.11.038

    Article  Google Scholar 

  • Noetinger, B., Estebenet, T.: Up-scaling of double porosity fractured media using continuous-time random walks methods. Transp. Porous Media 39(3), 315–337 (2000). doi:10.1023/A:1006639025910

    Article  Google Scholar 

  • Noetinger, B., Gautier, Y.: Use of the Fourier-Laplace transform and of diagrammatical methods to interpret pumping tests in heterogeneous reservoirs. Adv. Water Resour. 21(7), 581–590 (1998)

    Article  Google Scholar 

  • Noetinger, B., Jarrige, N.: A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks. J. Comput. Phys. 231(1), 23–38 (2012). doi:10.1016/j.jcp.2011.08.015

    Article  Google Scholar 

  • Noetinger, B., Estebenet, T., Landereau, P.: A direct determination of the transient exchange term of fractured media using a continuous time random walk method. Transp. Porous Media 44(3), 539–557 (2001a). doi:10.1023/A:1010647108341

    Article  Google Scholar 

  • Noetinger, B., Estebenet, T., Quintard, M.: Up scaling of fractured media: Equivalence between the large scale averaging theory and the continuous time random walk method. Transp. Porous Media 43(3), 581–596 (2001b). doi:10.1023/A:1010733724498

    Article  Google Scholar 

  • Nœtinger, B., Artus, V., Ricard, L.: Dynamics of the water-oil front for two-phase, immiscible flow in heterogeneous porous media. 2-Isotropic media. Transp. Porous Media 56(3), 305–328 (2004). doi:10.1023/B:TIPM.0000026086.75908.ca

    Article  Google Scholar 

  • Nunes, J.P., Bijeljic, B., Blunt, M.J.: Time-of-flight distributions and breakthrough curves in heterogeneous porous media using a pore-scale streamline tracing algorithm. Transp. Porous Media 109(2), 317–336 (2015). doi:10.1007/s11242-015-0520-y

    Article  Google Scholar 

  • O’Brien, G.S., Bean, C.J., McDermott, F.: Numerical investigations of passive and reactive flow through generic single fractures with heterogeneous permeability. Earth Planet. Sci. Lett. 213(3–4), 271–284 (2003a). doi:10.1016/S0012-821X(03)00342-X

    Article  Google Scholar 

  • O’Brien, G.S., Bean, C.J., McDermott, F.: A numerical study of passive transport through fault zones. Earth Planet. Sci. Lett. 214(3–4), 633–643 (2003b). doi:10.1016/S0012-821X(03)00398-4

    Article  Google Scholar 

  • Odeh, A.S.: Unsteady-state behavior of naturally fractured reservoirs. SPE J. 5(1), 60–66 (1965). doi:10.2118/966-PA

    Article  Google Scholar 

  • Oliver, D.S., Cunha, L.B., Reynolds, A.C.: Markov chain Monte Carlo methods for conditioning a permeability field to pressure data. Math. Geol. 29(1), 61–91 (1997)

    Article  Google Scholar 

  • O’Shaughnessy, B., Procaccia, I.: Diffusion on fractals. Phys. Rev. A 32(5), 3073–3083 (1985). doi:10.1103/PhysRevA.32.3073

    Article  Google Scholar 

  • Ottino, J.M.: The kinematics of mixing: stretching, chaos and transport. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Painter, S., Cvetkovic, V.: Upscaling discrete fracture network simulations: an alternative to continuum transport models. Water Resour. Res. (2005). doi:10.1029/2004WR003682

    Google Scholar 

  • Painter, S., Cvetkovic, V., Mancillas, J., Pensado, O.: Time domain particle tracking methods for simulating transport with retention and first-order transformation. Water Resour. Res. (2008). doi:10.1029/2007WR005944

    Google Scholar 

  • Pan, L., Bodvarsson, G.S.: Modeling transport in fractured porous media with the random-walk particle method: the transient activity range and the particle transfer probability. Water Resour. Res. (2002). doi:10.1029/2001WR000901

    Google Scholar 

  • Park, Y., de Dreuzy, J.R., Lee, K.K., Berkowitz, B.: Transport and intersection mixing in random fracture networks with power law length distributions. Water Resour. Res. 37(10), 2493–2501 (2001). doi:10.1029/2000WR000131

    Article  Google Scholar 

  • Park, Y., Lee, K., Kosakowski, G., Berkowitz, B.: Transport behavior in three-dimensional fracture intersections. Water Resour. Res. (2003). doi:10.1029/2002WR001801

    Google Scholar 

  • Pichot, G., Erhel, J., de Dreuzy, J.R.: A mixed hybrid mortar method for solving flow in discrete fracture networks. Appl. Anal. 89(10), 1629–1643 (2010). doi:10.1080/00036811.2010.495333

    Article  Google Scholar 

  • Pollock, D.W.: Semianalytical computation of path lines for finite-difference models. Ground Water 26(6), 743–750 (1988). doi:10.1111/j.1745-6584.1988.tb00425.x

    Article  Google Scholar 

  • Qu, Z.X., Liu, Z.F., Wang, X.H., Zhao, P.: Finite analytic numerical method for solving two-dimensional quasi-Laplace equation. Numer. Methods Partial Differ. Equ. 30(6), 1755–1769 (2014). doi:10.1002/num.21863

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: One- and two-equation models for transient diffusion processes in two-phase systems. Adv. Heat Transf. 23, 369–464 (1993). doi:10.1016/S0065-2717(08)70009-1

    Article  Google Scholar 

  • Redner, S.: Transport due to random velocity fields. Phys. D 38(1–3), 287–290 (1989). doi:10.1016/0167-2789(89)90207-8

    Article  Google Scholar 

  • Risken, H.: The Fokker-Planck Equation. Springer, Heidelberg New York (1996)

    Book  Google Scholar 

  • Rivard, C., Delay, F.: Simulations of solute transport in fractured porous media using 2D percolation networks with uncorrelated hydraulic conductivity fields. Hydrogeol. J. 12(6), 613–627 (2004). doi:10.1007/s10040-004-0363-z

    Article  Google Scholar 

  • Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Handbook of Numerical Analysis 2, Finite Element Methods -part 1, Elsevier Science Publishers B.V. (North-Holland), pp 523–639 (1991)

  • Robinet, J.C., Sardini, P., Delay, F., Hellmuth, K.H.: The effect of rock matrix heterogeneities near fracture walls on the residence time distribution (RTD) of solutes. Transp. Porous Media 72(3), 393–408 (2007). doi:10.1007/s11242-007-9159-7

    Article  Google Scholar 

  • Romary, T.: Integrating production data under uncertainty by parallel interacting markov chains on a reduced dimensional space. Comput. Geosci. 13(1), 103–122 (2009)

    Article  Google Scholar 

  • Romeu, R.K., Noetinger, B.: Calculation of internodal transmissivities in finite difference models of flow in heterogeneous porous media. Water Resour. Res. 31(4), 943–959 (1995). doi:10.1029/94WR02422

    Article  Google Scholar 

  • Roubinet, D., Irving, J.: Discrete-dual-porosity model for electric current flow in fractured rock. J. Geophys. Res. Solid Earth 119(2), 767–786 (2014). doi:10.1002/2013JB010668

    Article  Google Scholar 

  • Roubinet, D., Liu, H.H., de Dreuzy, J.R.: A new particle-tracking approach to simulating transport in heterogeneous fractured porous media. Water Resour. Res. (2010). doi:10.1029/2010WR009371

    Google Scholar 

  • Roubinet, D., de Dreuzy, J.R., Tartakovsky, D.M.: Particle-tracking simulations of anomalous transport in hierarchically fractured rocks. Comput. Geosci. 50(SI), 52–58 (2013). doi:10.1016/j.cageo.2012.07.032

    Article  Google Scholar 

  • Russian, A., Dentz, M., Gouze, P.: Time domain random walks for hydrodynamic transport in heterogeneous media. Water Resour. Res. (2016). doi:10.1002/2015WR018511

  • Saffman, P.G., Taylor, G.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. R. Soc. 245, 312–329 (1958)

    Article  Google Scholar 

  • Sahimi, M.: Flow and transport in porous media and fractured rock: from classical methods to modern approaches. Wiley, New York (2011)

    Book  Google Scholar 

  • Salamon, P., Fernandez-Garcia, D., Gomez-Hernandez, J.J.: A review and numerical assessment of the random walk particle tracking method. J. Contam. Hydrol. 87(3–4), 277–305 (2006). doi:10.1016/j.jconhyd.2006.05.005

    Article  Google Scholar 

  • Salles, J., Thovert, J.F., Delannay, R., Prevors, L., Auriault, J.L., Adler, P.: Taylor dispersion in porous media. Determination of the dispersion tensor. Phys. Fluids A 5(10), 2348–2376 (1993)

    Article  Google Scholar 

  • Scher, H., Lax, M.: Stochastic transport in a disordered solid I. Theory. Phys. Rev. B 7(10), 4491–4502 (1973a). doi:10.1103/PhysRevB.7.4491

    Article  Google Scholar 

  • Scher, H., Lax, M.: Stochastic transport in a disordered solid II. Impurity conduction. Phys. Rev. B 7(10), 4502–4519 (1973b). doi:10.1103/PhysRevB.7.4502

    Article  Google Scholar 

  • Scher, H., Margolin, G., Berkowitz, B.: Towards a unified framework for anomalous transport in heterogeneous media. Chem. Phys. 284(1–2), 349–359 (2002a). doi:10.1016/S0301-0104(02)00558-X

    Article  Google Scholar 

  • Scher, H., Margolin, G., Metzler, R., Klafter, J., Berkowitz, B.: The dynamical foundation of fractal stream chemistry: the origin of extremely long retention times. Geophys. Res. Lett. (2002b). doi:10.1029/2001GL014123

    Google Scholar 

  • Semra, K., Ackerer, P., Mosé, R.: Three dimensional groundwater quality modeling in heterogeneous media. Water pollution II: Modeling, measuring and prediction, pp. 3–11. Computational Mechanics Publications, Southampton, UK (1993)

  • Sen, P.: Time-dependent diffusion coefficient as a probe of permeability of the pore-wall. J. Chem. Phys. 119(18), 9871–9876 (2003). doi:10.1063/1.1611477

    Article  Google Scholar 

  • Sen, P.: Time-dependent diffusion coefficient as a probe of geometry. Concepts Magn. Resonance Part A 23A(1), 1–21 (2004). doi:10.1002/cmr.a.20017

    Article  Google Scholar 

  • Sen, P., Schwartz, L., Mitra, P., Halperin, B.: Surface relaxation and the long-time diffusion coefficient in porous media: periodic geometries. Phys. Rev. B 49(1), 215–225 (1994). doi:10.1103/PhysRevB.49.215

    Article  Google Scholar 

  • Srinivasan, G., Tartakosky, D.M., Dentz, M., Viswanathan, H., Berkowitz, B., Robinson, B.A.: Random walk particle tracking simulations of non-fickian transport in heterogeneous media. J. Comput. Phys. 229(11), 4304–4314 (2010). doi:10.1016/j.jcp.2010.02.014

    Article  Google Scholar 

  • Sun, N.Z.: A finite cell method for simulating the mass transport process in porous media. Water Resour. Res. 35(12), 3649–3662 (1999). doi:10.1029/1999WR900187

    Article  Google Scholar 

  • Sun, N.Z.: Modeling biodegradation processes in porous media by the finite cell method. Water Resour. Res. 38, 3 (2002). doi:10.1029/2000WR000198

    Google Scholar 

  • Tallakstad, K.T., Knudsen, H.A., Ramstad, T., Lovoll, G., Maloy, K.J., Toussaint, R., Flekkoy, E.G.: Steady-state two-phase flow in porous media: statistics and transport properties. Phys. Rev. Lett. 102(7), (2009). doi:10.1103/PhysRevLett.102.074502

  • Tang, C.: Diffusion-limited aggregation and the Saffman-Taylor problem. Phys. Rev. A 31(3), 1977–1979 (1985). doi:10.1103/PhysRevA.31.1977

    Article  Google Scholar 

  • Tang, D.H., Frind, E.O., Sudicky, E.A.: Contaminant transport in fractured porous media: Analytical solution for a single fracture. Water Resour. Res. 17(3), 555–564 (1981). doi:10.1029/WR017i003p00555

    Article  Google Scholar 

  • Tartakovsky, A.M., Meakin, P.: Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Adv. Water Resour. 29(10), 1464–1478 (2006). doi:10.1016/j.advwatres.2005.11.014

    Article  Google Scholar 

  • Taylor, G.I.: Diffusion and mass transport in tubes. Proc. Phys. Soc. Sect. B 67(420), 857–869 (1954). doi:10.1088/0370-1301/67/12/301

    Article  Google Scholar 

  • Teodorovich, E., Spesivtsev, P., Nœtinger, B.: A stochastic approach to the two-phase displacement problem in heterogeneous porous media. Transp. Porous Media 87(1), 151–177 (2011). doi:10.1007/s11242-010-9673-x

    Article  Google Scholar 

  • Tompson, A.F.B., Gelhar, L.W.: Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media. Water Resour. Res. 26(10), 2541–2562 (1990). doi:10.1029/WR026i010p02541

    Article  Google Scholar 

  • Uffink, G.J.M.: A random walk method for the simulation of macrodispersion in a stratified aquifer. In: 18th General Assembly Proceedings Symposium, IAHS Publications. 146, IAHS, Wallingford, UK., Hamburg, Germany (1985)

  • Wang, Y.F., Liu, Z.F., Wang, X.H.: Finite analytic numerical method for three-dimensional fluid flow in heterogeneous porous media. J. Comput. Phys. 278, 169–181 (2014). doi:10.1016/j.jcp.2014.08.026

    Article  Google Scholar 

  • Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J. 3(3), 245–255 (1963)

    Article  Google Scholar 

  • Wen, X.H., Gomez-Hernandez, J.J.: The constant displacement scheme for tracking particles in heterogeneous aquifers. Ground Water 34(1), 135–142 (1996). doi:10.1111/j.1745-6584.1996.tb01873.x

    Article  Google Scholar 

  • Willmann, M., Carrera, J., Snchez-Vila, X.: Transport upscaling in heterogeneous aquifers: What physical parameters control memory functions? Water Resour. Res. 44, 12 (2008). doi:10.1029/2007WR006531

    Article  Google Scholar 

  • Witten, T.A., Sander, L.M.: Diffusion-limited aggregation. Phys. Rev. B 27(9), 5686–5697 (1983). doi:10.1103/PhysRevB.27.5686

    Article  Google Scholar 

  • Zheng, C., Bennett, G.D.: Applied contaminant transport modeling, 2nd edn, p. 440. Wiley, Hoboken (2002)

    Google Scholar 

  • Zimmermann, S., Koumoutsakos, P., Kinzelbach, W.: Simulation of pollutant transport using a particle method. J. Comput. Phys. 173(1), 322–347 (2001). doi:10.1006/jcph.2001.6879

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Noetinger.

Appendices

Appendix 1: Langevin Equation and Fokker–Planck Equation

In this section, we show the equivalence between the Fokker–Planck Eq. (1) and the Langevin Eq. (2). To this end, we use a duality argument. Let \(f({\mathbf{x}})\) be a twice differentiable function. We consider now the average \(\langle f[{\mathbf{x}}(t)] \rangle \). By virtue of (3), this average may be written as

$$\begin{aligned} \langle f[{\mathbf{x}}(t)] \rangle = \int d{\mathbf{x}} P(\mathbf{x}, t) f({\mathbf{x}}). \end{aligned}$$
(57)

We consider now \(\langle f[{\mathbf{x}}(t +\hbox {d}t)] \rangle \). To this end, we note that \({\mathbf {x}}(t + \hbox {d}t)\) is according to (2)

$$\begin{aligned} {\mathbf {x}}(t + \hbox {d}t) = {\mathbf {x}}(t) + {\mathbf {v}}[{\mathbf {x}}(t)] \hbox {d}t + \sqrt{2 {\mathbf {B}}[{\mathbf {x}}(t)]} \cdot \mathbf \eta (t) \equiv {\mathbf {x}}(t) + {\Delta } {\mathbf {x}}(t) \end{aligned}$$
(58)

where we use the Ito interpretation of the stochastic integral (Risken 1996); \(\varvec{\eta }(t)\) is a Gaussian random variable with 0 mean and unit variance. Taylor expansion of \(f[{\mathbf {x}}(t) +{\Delta } {\mathbf {x}}(t) ]\) consistently up to order \(\hbox {d}t\) then gives

$$\begin{aligned} f[{\mathbf{x}}(t + \hbox {d}t)] - f[{\mathbf{x}}(t)] = \nabla f[\mathbf{x}(t)] \cdot {\mathbf {v}}[{\mathbf {x}}(t)] \hbox {d}t + \nabla \otimes \nabla f[{\mathbf {x}}(t)] : {\mathbf {B}}[{\mathbf {x}}(t)] \hbox {d}t. \end{aligned}$$
(59)

It is worthwhile noting that this equation is also called the Ito formula, or chain rule of stochastic calculus (Risken 1996). Taking the average of (59) and using (57) gives after integration by parts the Fokker–Planck Eq. (1).

Appendix 2: Dual-Porosity Models

Fractured porous media are characterized by a high property contrast between fractures and matrix. This leads to introducing a new class of models, starting from the steady-state double-porosity models (Barenblatt and Zheltov 1960; Warren and Root 1963) as derived by Arbogast et al. (1990) and Quintard and Whitaker (1993) that couple matrix and fracture by means of a linear exchange term:

$$\begin{aligned} \left\{ \begin{array}{rcl} \phi _f V_f {{\partial P_f({\mathbf{x}},t)}\over {\partial t}} &{} = &{} {D_f}{\nabla }^2 P_f({\mathbf{x}},t) + Q({\mathbf{x}},t)\\ \phi _m V_m{{\partial P_m({\mathbf{x}},t)}\over {\partial t}} &{} = &{} {D_m}{\nabla }^2 P_m({\mathbf{x}},t) - Q({\mathbf{x}},t). \end{array} \right. \end{aligned}$$
(60)

Here, \(\phi _f V_f\) and \(\phi _m V_m\) represent, respectively, the overall proportions of fracture and matrix volumes (weighted by the relevant porosity and compressibility). The model is closed once the interporosity flux \(Q({\mathbf{x}},t)\) is expressed as a function of \( P_f({\mathbf{x}},t)\) and \( P_m({\mathbf{x}},t)\). In the steady-state case, \(Q({\mathbf{x}},t)\) is given by:

$$\begin{aligned} Q({\mathbf{x}},t) = \lambda \left( P_m({\mathbf{x}},t) - P_f({\mathbf{x}},t) \right) . \end{aligned}$$
(61)

The transfer coefficient \(\lambda \), reciprocal of a time depends mainly on the geometry of the matrix blocks. It is proportional to \(D_m\). Its determination from the detailed DFN geometry is discussed in Sect. 3.4.1.

More general models using memory functions accounting for more details of the diffusion inside the matrix can be introduced (Odeh 1965; Swaan 1976; Carslaw and Jaeger 1986; Daviau 1986; Chen 1989; Swann and Ramirez-Villa 1993). These models belong to the general class of multiple-rate mass transfer (MRMT) models or multiple interacting continua (MINC) (Narasimhan et al. 1988; Haggerty and Gorelick 1995; de Dreuzy et al. 2013). These models correspond to quite different formulations of the same physics differ through the formulation of the exchange term. The latter appears as a time convolution expressed by:

$$\begin{aligned} Q({\mathbf{x}},t)= & {} \int _0^t G(t-\tau )\left( {{d(P_m({\mathbf{x}},\tau )- P_f({\mathbf{x}}, \tau ))}}\over {d\tau }\right) d\tau . \end{aligned}$$
(62)

In all cases, the exchange kernel G(t) is scaled by a parameter \(\lambda \) which depends only on the geometry of the matrix blocks. It was shown in Landereau et al. (2001) and Babey et al. (2015) that multiple porosity models, MRMT models and transient models are equivalent and correspond to different formulations of the same idea.

In most cases, the term \({D_m}{\nabla }^2 P_m({\mathbf{x}},t)\) may be neglected in the double-porosity Eq. (60), so \(P_m({\mathbf{x}},t)\) may be eliminated from the equations to provide the following generic form:

$$\begin{aligned} \int _0^t d\tau (\phi _f V_f \delta (t-\tau )+\phi _m V_m f(t-\tau ))\frac{\partial {P}_{f} ({\mathbf{x}}, \tau )}{\partial \tau } = \nabla .( D_{f} \nabla {P}_f ({\mathbf{x}}, t)). \end{aligned}$$
(63)

The quantity f(t) is the time-dependent exchange function. Introducing the average pressure in the fractures \({<}{{\hat{P}}}_f{>}(t)\) solution of the following initial value problem:

$$\begin{aligned}&\phi ({\mathbf{x}})\frac{\partial P_f({\mathbf{x}}, t)}{\partial t} = \nabla . (D({\mathbf{x}})\nabla P_f({\mathbf{x}}, t)) \end{aligned}$$
(64)
$$\begin{aligned}&\forall {\mathbf{x}} \in {\varOmega }_f P_f({\mathbf{x}}, t=0)=1\end{aligned}$$
(65)
$$\begin{aligned}&\forall {\mathbf{x}} \in {\varOmega }_m P_f({\mathbf{x}}, t=0)=0\end{aligned}$$
(66)
$$\begin{aligned}&{<}P_f{>}(t) = \frac{1}{\vert {\varOmega }_f \vert } \int _{{\varOmega }_f } d{\mathbf{x}} P_f({\mathbf{x}}, t). \end{aligned}$$
(67)

It is possible to show the following relation in the Laplace domain:

$$\begin{aligned} {<}P_f{>}(s) = \frac{\phi _f V_f}{s(\phi _f V_f + \phi _m V_m f(s)) }. \end{aligned}$$
(68)

The practical interest of introducing the f(s) function is that it can be shown that the general solution of a double-porosity system (60) can be directly related to a solution of a single-porosity equation replacing the argument s of the single-porosity solution by the argument \(s(\phi _f V_f +s\phi _m V_m f(s))\). The large amount of analytical single-porosity solutions that are well known is sufficient for most practical situations. This means that all the double-porosity behavior is captured by f(s), which appears to be a renormalized apparent storativity. The initial value problem (67) defining \({<}{{\hat{P}}}_f{>}(t)\) has in turn a simple RW interpretation. The quantity \({<}P_f{>}(t)\) corresponds to the average proportion of particle undergoing RW (with diffusivity \(D_m\)) that belongs to the fractures at time t given they was released at a random location in the fractures at time \(t=0\). In the steady-state case, the function f(s) is given by (Noetinger and Estebenet 2000; Noetinger et al. 2001a):

$$\begin{aligned} f(s) = \frac{\lambda }{\phi _m V_m s + \lambda }. \end{aligned}$$
(69)

It appears that \(\lambda \) is a characteristic diffusion time in the matrix. Explicit expressions may be given for f(s) for either a layered medium, or for spherical blocks:

  • for the layered case

    $$\begin{aligned} f(s) =\sqrt{ \frac{\lambda }{3s V_m} } \tanh \sqrt{{\frac{3 V_m s}{\lambda }}}, \end{aligned}$$
    (70)
  • for the spherical case

    $$\begin{aligned} f(s) = \frac{\lambda }{5 sV_m}\left( \sqrt{\frac{15 V_m s}{\lambda }}\mathrm cotanh\sqrt{\frac{15V_m s}{\lambda }}- 1 \right) . \end{aligned}$$
    (71)

These generic forms, or others can be used for large-scale applications, solving (63) using any numerical approach. It remains to be able to evaluate the transfer coefficient \(\lambda \) or the full f(t) function. This is the objective of Sect. 3.4.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noetinger, B., Roubinet, D., Russian, A. et al. Random Walk Methods for Modeling Hydrodynamic Transport in Porous and Fractured Media from Pore to Reservoir Scale. Transp Porous Med 115, 345–385 (2016). https://doi.org/10.1007/s11242-016-0693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0693-z

Keywords

Navigation