Skip to main content
Log in

Simulations of solute transport in fractured porous media using 2D percolation networks with uncorrelated hydraulic conductivity fields

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Two-dimensional percolation networks have been used to model a disordered and fractured porous medium. The advantage of percolation networks is that they allow the flow and transport properties of the system to be systematically studied as a function of the connectivity of the fractures and/or the permeable regions. The aim of this research is to study hydrodynamic dispersion in such networks, and to investigate the behavior of the longitudinal dispersion coefficient DL with binary and log-normally distributed hydraulic conductivity fields. In particular, the study focuses on the behavior of DL at the percolation threshold pc, where the insufficiency of flow field homogenization and the limited number of tortuous paths for flow and transport force DL to behave anomalously, i.e., to be scale- and time-dependent. The simulations indicate that the DL population taken over a large number of the network realizations resembles a log-normal distribution, hence indicating that, unlike the hydraulic conductivity, DL is not a self-averaged property whose variance should tend to zero when the size of the system tends to infinity. In addition, it was found that the power law that characterizes the scale dependence of DL is contingent upon its computation method. Moreover, DL is found to have a completely different behavior in networks with low and high connectivities.

Résumé

Des réseaux de percolation bi-dimensionnels ont été utilisés pour modéliser des milieux poreux fracturés et désordonnés. L’avantage de ces réseaux est qu’ils permettent d’étudier les propriétés d’écoulement et de transport en fonction de la connexité des fractures et/ou des zones perméables. L’objectif est d’appréhender la dispersion hydrodynamique et d’investiguer le comportement du coefficient de dispersion longitudinal DL pour des réseaux ayant une distribution des conductivités hydrauliques binaire et log-normale. En particulier, le comportement de DL a été étudié au seuil de percolation pc, là où l’inhomogénéité des vitesses du fluide et le nombre limité de chemins tortueux disponibles pour l’écoulement et le transport entraînent un comportement anormal de DL, à savoir, une dépendance vis-à-vis des échelles de temps et d’espace. Les simulations montrent que les populations de DL définies pour un grand nombre de réseaux ressemblent à des distributions log-normales, indiquant que, contrairement à la conductivité hydraulique, DL n’est pas une propriété dont la variance tend vers zéro lorsque la taille du système tend vers l’infini. Il a également été trouvé que les lois de puissance qui caractérisent la dépendance d’échelle de DL découlent directement de la méthode de calcul. Enfin, les simulations engendrent un comportement très différent de DL dans des réseaux faiblement ou fortement connectés.

Resumen

Simulaciones de transporte de solutos en medio heterogéneo utilizando redes de precolación 2D con campos de conductividad no correlacionados. Se han utilizado redes de percolación en dos dimensiones para modelizar un medio poroso fracturado y desordenado. La ventaja de redes de percolación es que permiten estudiar sistemáticamente las propiedades de flujo y transporte del sistema en función de la conectividad de las fracturas y/o regiones permeables. El objetivo de esta investigación es estudiar la dispersión hidrodinámica en las redes mencionadas, e investigar el comportamiento del coeficiente de dispersión longitudinal DL con campos de conductividad hidráulica que tienen distribución log-normal y binaria. El estudio se enfoca particularmente en el comportamiento de DL cuando se alcanza el threshold de percolación pc, donde la insuficiencia de homogenización del campo de flujo y el número limitado de trayectorias tortuosas de flujo y fuerza de transporte DL se comportan de manera anómala, i.e., son dependientes del tiempo y la escala. Las simulaciones indican que la población DL tomada en un número grande en las redes realizadas se asemeja a una distribución log-normal, indicando por lo tanto que, a diferencia de la conductividad hidráulica, DL no es una propiedad auto-promediable cuya variación tienda a cero cuando el tamaño del sistema tiende al infinito. Se encontró además que la ley potencia que caracteriza la dependencia en escala de DL es dependiente del método de cálculo. Más aún, se encontró que DL tiene un comportamiento completamente distinto en las redes de alta y baja conectividad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a,b
Fig. 3a,b
Fig. 4a,b
Fig. 5
Fig. 6a,b
Fig. 7a,b
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adler PM, Berkowitz B (2000) Effective medium analysis of random lattices. Transport in Porous Media 40(2):145–151

    Article  Google Scholar 

  • Ambegaokar V, Halperin BI, Langer JS (1971) Hopping conductivity in disordered systems. Phys Rev B 4(8):2612–2620

    Article  Google Scholar 

  • Arya A, Hewett TA, Larson RG, Lake LW (1988) Dispersion and reservoir heterogeneity. SPE Reservoir Engineering 3:139–148

    CAS  Google Scholar 

  • Banton O, Bangoy JP (1997) Hydrogéologie—Multiscience environnementale des eaux souterraines [Hydrogeology – Groundwater environmental multi-science]. Presses de l’Université du Québec/AUPELF

  • Banton O, Delay F, Porel G (1997) A new time domain random-walk method for solute transport in 1-D heterogeneous media. Ground Water 35(6):1008–1013

    CAS  Google Scholar 

  • Berkowitz B, Braester C (1991) Dispersion in sub representative elementary volume fracture networks: Percolation theory and random walk approaches. Water Resour Res 27(12):3159–3164

    Article  CAS  Google Scholar 

  • Berkowitz B, Balberg I (1993) Percolation theory and its application to groundwater hydrology. Water Resour Res 29(4):775–794

    Article  Google Scholar 

  • Berkowitz B, Scher H (1995) On characterization of anomalous dispersion in porous and fractured media. Water Resour Res 31(6):1461–1466

    Article  Google Scholar 

  • Berkowitz B, Naumann C, Smith L (1994) Mass transfer at fracture intersections: An evaluation of mixing models. Water Resour Res 30(6):1765–1773

    Article  Google Scholar 

  • Bruderer C, Bernabé Y (2001) Network modeling of dispersion: Transition from Taylor dispersion in homogeneous networks to mechanical dispersion in very heterogeneous ones. Water Resour Res 37(4):897–908

    Article  Google Scholar 

  • Charlaix E, Hulin JP, Leroy C, Zarcone C (1988) Experimental study of tracer dispersion in flow through two-dimensional networks of etched capillaries. J Phys D 21:1727–1732

    Article  CAS  Google Scholar 

  • Dagan G (1990) Transport in heterogeneous porous formations: Spatial moments, ergodicity, and effective dispersion. Water Resour Res 26(6):1281–1290

    Article  CAS  Google Scholar 

  • Delay F, Bodin J (2001) Time domain random walk method to simulate transport by advection – dispersion and matrix diffusion in fracture networks. Geophys Res Lett 28(21):4051–4054

    Article  Google Scholar 

  • De Marsily G (1985) Flow and transport in fractured rocks: connectivity and scale effect. Mem Int Assoc Hydrogeol 17(2):267–277

    Google Scholar 

  • Domenico PA, Schwartz FW (1990) Physical and Chemical Hydrogeology. Wiley, New York, 528 pp

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, New Jersey, 604 pp

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974

    Article  CAS  Google Scholar 

  • Gist GA, Thompson AH, Katz AJ, Higgins RL (1990) Hydrodynamic dispersion and pore geometry in consolidated rock. Phys Fluids A 2(9):1533–1544

    Article  Google Scholar 

  • Hestir K, Long JCS (1990) Analytical expressions for the permeability of radon in two-dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theory. J Geophys Res 98(B13):21565–21581

    Google Scholar 

  • Hewett TA (1986) Fractal distribution of reservoir heterogeneity and their influence on fluid transport. Society of Petroleum Engineers, SPE 15386

  • Huseby O, Thovert JF, Adler PM (2001) Dispersion in three-dimensional fracture networks. Phys Fluids 13(3):594–615

    Article  CAS  Google Scholar 

  • Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45(4):574–588

    Article  Google Scholar 

  • Koch DL, Brady JF (1988) Anomalous diffusion in heterogeneous porous media. Phys Fluids 31(5):965–973

    Article  CAS  Google Scholar 

  • Koplik J, Redner S, Wilkinson D (1988) Transport and dispersion in random networks with percolation disorder. Phys Rev A 37(7):2619–2636

    Article  PubMed  Google Scholar 

  • Kupper JA, Schwartz FW, Steffler PM (1995) A comparison of fracture mixing models 2. Analysis of simulation trials. J Contam Hydrol 18:33–58

    Article  Google Scholar 

  • Lallemand-Barrès A, Peaudecerf P (1978) Recherche des relations entre la valeur de la dispersivité macroscopique d’un milieu aquifère, ses autres caractéristiques et les conditions de mesure [Search for relations between the macroscopic dispersivity value of an aquifer, its other characteristics and measurement conditions]. Bulletin du B.R.G.M. (deuxième série), section III, (4), pp 277–284

  • Lee CH, Lin BS, Yu JL (1994) Dispersion and connectivity in flow through fractured networks. J Chinese Institute of Engineers 17(4):521–535

    Google Scholar 

  • Long JCS, Billaux DM (1987) From field data to fracture network modeling: An example incorporating spatial structure. Water Resour Res23(7):1201–1216

    Google Scholar 

  • Long, JCS, Karasaki K, Davey A, Peterson J, Landsfield M, Kemeny J, Martel S (1991) An inverse approach to construction of fracture hydrology models conditioned by geophysical data: An example from the validation exercises at the Stripa mine. Int J Rock Mech Min 28(2/3):121–142

    Google Scholar 

  • Mourzenko VV, Yousefian F, Kolbah B, Thovert J-F, Adler PM (2002) Solute transport at fracture intersections. Water Resour Res 38(1):1–1 to 1–14

    Article  Google Scholar 

  • Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26(8):1749–1758

    Article  Google Scholar 

  • Park YJ, Lee KK (1999) Analytical solutions for solute transfer characteristics at continuous fracture junctions. Water Resour Res 35(5):1531–1537

    Article  Google Scholar 

  • Parney R, Smith L (1995) Fluid velocity and path length in fractured media. Geophys Res Lett 22(11):1437–1440

    Article  Google Scholar 

  • Philip JR (1986) Issues in flow and transport in heterogeneous media. Transport in Porous Media 1:319–338

    Google Scholar 

  • Ross B (1986) Dispersion in fractal fracture networks. Water Resour Res 22(5):823–827

    Google Scholar 

  • Rubin Y (1990) Stochastic modeling of macrodispersion in heterogeneous porous media. Water Resour Res 26 (1):133–141

    Article  CAS  Google Scholar 

  • Sahimi M (1993) Fractal and superdiffusive transport and hydrodynamic dispersion in heterogeneous porous media. Transport in Porous Media 13(1):3–40

    CAS  Google Scholar 

  • Sahimi M (1995) Flow and Transport in Porous Media and Fractured Rock. Wiley VCH, Weinheim, Germany, 500 pp

  • Sahimi M, Imdakm AO (1988) The effect of morphological disorder on hydrodynamic dispersion in flow through porous media. J Phys A: Math Gen 21(19):3833–3870

    Google Scholar 

  • Sahimi M, Mukhopadhyay S (1996) Scaling properties of a percolation model with long-range correlations. Phys Rev E 54(4):3870–3880

    Article  CAS  Google Scholar 

  • Sahimi M, Hughes BD, Scriven LE, Davis HT (1986) Dispersion in flow through porous media – 1. One-phase flow. Chem Eng Sci 41(8):2103–2122

    Article  CAS  Google Scholar 

  • Stauffer D, Aharony A (1992) Introduction to Percolation Theory, Second edition. Taylor and Francis, London, 192 pp

  • Wels C, Smith L (1994) Retardation of sorbing solutes in fractured media. Water Resour Res 30(9):2547–2563

    Article  Google Scholar 

  • Wilke S, Guyon E, De Marsily G (1985) Water penetration through fractured rocks: Test of a tridimensional percolation description. Math Geol 17(1):17–27

    Google Scholar 

  • Xu M, Eckstein Y (1995) Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. Ground Water 33(6):905–908

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada and the Formation des Chercheurs et Aide à la Recherche of Québec for their financial support. They would also like to deeply thank Dr. Muhammad Sahimi for his help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Rivard.

Notation List

d

Dimensionality or Euclidean dimension

dB

Backbone fractal dimension, dB=d-βB

df

Sample-spanning cluster fractal dimension, df=d-β/ν

DL

Longitudinal dispersion coefficient

e

Exponent of Ke

i

Hydraulic gradient

K

Hydraulic conductivity

Ke

Equivalent hydraulic conductivity

l

Bond length

L

Network length

n

Number of bonds in one direction

ne

Effective porosity

p

Probability or fraction of open bonds

pc

Percolation threshold

Pe

Peclet number, Pe=u*ξp/Dm where Dm is the molecular diffusion coefficient

Q

Flow rate

R2

Determination coefficient

S

Surface

t

Travel tim

v

Velocity, \( \hat{v} = {\text{K*i}} \)

x

Position along the longitudinal axis

XA

Fraction of open bonds belonging to the sample-spanning cluster

XB

Fraction of open bonds belonging to the backbone

αL

Longitudinal dispersivity

β

Exponent of XA

βB

Exponent of XB

χ

Exponent of the ~Lχ type law

δ

Exponent of the ~tδ type law

ν

Exponent of the percolation correlation length (ξp)

θ

(e - β)/ν

θB

(e - βB)/ν

σt

Standard deviation of the particle (mass) distributions in time at a given location

σx

Standard deviation of the particle (mass) distributions in space at a given time

ξp

Percolation correlation length

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivard, C., Delay, F. Simulations of solute transport in fractured porous media using 2D percolation networks with uncorrelated hydraulic conductivity fields. Hydrogeology Journal 12, 613–627 (2004). https://doi.org/10.1007/s10040-004-0363-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0363-z

Keywords

Navigation