Skip to main content
Log in

Integrating production data under uncertainty by parallel interacting Markov chains on a reduced dimensional space

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In oil industry and subsurface hydrology, geostatistical models are often used to represent the porosity or the permeability field. In history matching of a geostatistical reservoir model, we attempt to find multiple realizations that are conditional to dynamic data and representative of the model uncertainty space. A relevant way to simulate the conditioned realizations is by generating Monte Carlo Markov chains (MCMC). The huge dimensions (number of parameters) of the model and the computational cost of each iteration are two important pitfalls for the use of MCMC. In practice, we have to stop the chain far before it has browsed the whole support of the posterior probability density function. Furthermore, as the relationship between the production data and the random field is highly nonlinear, the posterior can be strongly multimodal and the chain may stay stuck in one of the modes. In this work, we propose a methodology to enhance the sampling properties of classical single MCMC in history matching. We first show how to reduce the dimension of the problem by using a truncated Karhunen–Loève expansion of the random field of interest and assess the number of components to be kept. Then, we show how we can improve the mixing properties of MCMC, without increasing the global computational cost, by using parallel interacting Markov Chains. Finally, we show the encouraging results obtained when applying the method to a synthetic history matching case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrieu, C., Jasra, A., Doucet, A., Moral, P.D.: On non-linear Markoc Chain Monte Carlo via self-interacting approximations. Tech. rep., University of Bristol (2007)

  2. Andrieu, C., Moulines, E.: On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16, 1462–1505 (2003)

    Article  MathSciNet  Google Scholar 

  3.  Andrieu, C., Robert, C.: Controlled MCMC for Optimal Sampling. Tech. rep., Cérémade, Université de PARIS - DAUPHINE (2001)

  4. Caers, J., Hoffman, T.: The probability perturbation method: a new look at bayesian inverse modeling. Math. Geol. 38(1), 81–100 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, Y., Zhang, D.: Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv. Water Res. 29, 1107–1122 (2006)

    Article  Google Scholar 

  6. Dostert, P., Efendiev, Y., Hou, T., Luo, W.: Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification. J. Comput. Phys. 217(1), 123–142 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Earl, D., Deem, M.: Parallel tempering : theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7, 3910–3916 (2005)

    Article  Google Scholar 

  8. Gavalas, G., Shah, P., Seinfeld, J.: Reservoir history matchng by Bayesian estimation. SPE J. 16(6), 337–350 (1976)

    Google Scholar 

  9. Geyer, C.: Markov chain Monte Carlo maximum likelihood. In: Computing Science and Statistics: Proceedings of 23rd Symposium on the Interface Foundation, p. 156. American Statistical Association, Fairfax Station, New York (1991)

    Google Scholar 

  10. Ghanem, R., Spanos, P.: Stochastic Finite Elements, a Spectral Approach. Springer, New York (1991)

    MATH  Google Scholar 

  11. Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algorithm. Bernoulli 7, 223–242 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Holden, L., Sannan, S., Soleng, H., Arntzen, O.: History Matching using Adaptive Chains. Tech. rep., Norwegian Computing Center (2002)

  13. Hu, L.Y.: Gradual deformation and iterative calibration of Gaussian-Related stochastic models. Math. Geol. 32(1), 87–108 (2000)

    Article  Google Scholar 

  14. Iba, Y.: Extended ensemble Monte Carlo. Int. J. Modern Phys. C 12(5), 623–656 (2001)

    Article  Google Scholar 

  15. Kitanidis, P.: Quasi-linear geostatistical theory for inversing. Water Resour. Res. 31(10), 2411–2419 (1995)

    Article  Google Scholar 

  16. Kou, S., Zhou, Q., Wong, W.: Equi-energy sampler with applications in statistical inference and statistical mechanics. Ann. Stat. 34(4), 1581–1619 (2006)

    Article  MathSciNet  Google Scholar 

  17. Lehoucq, R., Sorensen, D., Yang, C.: ARPACK Users’ Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1997)

    Google Scholar 

  18. Loève, M.: Probability Theory. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  19. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.T.M.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091 (1953)

    Article  Google Scholar 

  20. Oliver, D.: On conditional simulation to inaccurate data. Math. Geol. 28(6), 811–817 (1996)

    Article  Google Scholar 

  21. Oliver, D., Reynolds, A., Bi, Z., Abacioglu, Y.: Integration of production data into reservoir models. Pet. Geosci. 7(9), 65–73 (2001)

    Google Scholar 

  22. Oliver, D.S., Cunha, L.B., Reynolds, A.C.: Markov chain Monte Carlo methods for conditionning a permeability field to pressure data. Math. Geol. 29(1), 61–91 (1997)

    Article  Google Scholar 

  23. Robert, C., Casella, G.: Monte-Carlo Statistical Methods, 2nd edn. Springer, New York (2004)

    MATH  Google Scholar 

  24. Romary, T., Hu, L.: Assessing the dimensionality of random fields with Karhunen–Loève expansion. In: Petroleum Geostatistics 2007. EAGE, Cascais, 10–14 September 2007

    Google Scholar 

  25. Sarma, P., Durlofsky, L., Aziz, K., Chen, W.: Efficient real-time reservoir management using adjoint-based optimal control and model updating. Comput. Geosci. 10(1), 3–36 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. StreamSim Technologies, Inc.: 3dsl User Manual, Version 2.10 edn. (2003)

  27. Tarantola, A.: Inverse Problem Theory and Model Parameter Estimation. SIAM, Philadelphia (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Romary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romary, T. Integrating production data under uncertainty by parallel interacting Markov chains on a reduced dimensional space. Comput Geosci 13, 103–122 (2009). https://doi.org/10.1007/s10596-008-9108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-008-9108-8

Keywords

Navigation