Skip to main content

Advertisement

Log in

Assessment of genetic homogeneity and analysis of phytomedicinal potential in micropropagated plants of Nardostachys jatamansi, a critically endangered, medicinal plant of alpine Himalayas

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Nardostachys jatamansi (D. Don) DC., a small, perennial, rhizomatous herb of immense medicinal importance since ancient times, is restricted to specialized habitats of alpine Himalayas ranging from 3000 to 5200 m asl. The species has been recently listed as critically endangered under IUCN Red list of threatened species due to over exploitation of its rhizomes for medicinal uses, habitat degradation, trade and other biotic and anthropogenic interferences. An efficient protocol using both indirect and direct shoot organogenesis has been optimized for N. jatamansi. Best callusing was achieved from the cut ends of leaf and petiole explants within 15 days of culture in MS medium supplemented with 1.5 mg/l α-naphthalene acetic acid and 1.0 mg/l meta-Topolin. Culturing the explants at low temperature (13 ± 1 °C) resulted in better callus growth, shoot regeneration, hyperhydricity control and improvement in photosynthetic pigment content in regenerated shoots. Also, direct organogenesis from shoot tip and petiole explants was achieved in MS medium containing 1.0 mg/l meta-Topolin. Optimum rooting was achieved in the same medium supplemented with 1.0 mg/l indole acetic acid wherein averages of 4.52 roots/shoot were induced. Genetic stability of in vitro-derived plantlets was assessed and compared to mother plant using molecular markers and flow cytometry. Intron Splice Junction (ISJ) and Start Codon Targeted polymorphism (SCoT) marker based profiling revealed uniform banding profile in case of direct shoot organogenesis (DSO)-derived plants while callus mediated organogenesis (CMO)-derived plants showed slight variations as compared to mother plant. The genome size of N. jatamansi was found to be 2C = 1.40 ± 0.01 pg and therefore 684.6 Mbp (1C). Although organogenic calli showed mixoploidy but no major phenotypic and genetic rearrangements were detected by flow cytometry in callus-derived plants. Significantly higher antioxidant activity was observed in callus-derived plants as compared to mother and DSO-derived plants. Plant parts, regeneration pathways and various solvent systems greatly affected the yields of total phenolics, flavonoids, alkaloids, tannins contents present in the in vitro raised plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SCoT:

Start Codon Targeted polymorphism

ISJ:

Intron Splice Junction

FCM:

Flow cytometry

LB01:

Lysis buffer 01

MS medium:

Murasshige and Skoog medium (1962)

NAA:

α-naphthaleneacetic acid

2-4D :

2,4-dichlorophenoxyacetic acid

mT:

Meta-Topolin

KN:

Kinetin

2-iP:

N6–[2-isopentenyl] adenine

BAP:

6-benzylaminopurine

TDZ:

Thidiazuron

IAA:

Indole-3 acetic acid

IBA:

Indole-3-butyric acid

PGRs:

Plant growth regulators

DSO:

Direct shoot organogenesis

CMO:

Callus mediated organogenesis

PCR:

Polymerase chain reaction

Mbp:

Mega base pairs

References

  • Agarwal T, Gupta AK, Patel AK, Shekhawat NS (2015) Micropropagation and validation of genetic homogeneity of Alhagi maurorum using SCoT, ISSR and RAPD markers. Plant Cell Tissue Organ Cult 120:313–323

    Article  CAS  Google Scholar 

  • Alan AR, Zeng H, Assani A et al (2007) Assessment of genetic stability of the germplasm lines of medicinal plant Scutellaria baicalensis Georgi (Huang-qin) in long-term, in vitro maintained cultures. Plant Cell Rep 26:1345–1355

    Article  CAS  PubMed  Google Scholar 

  • Ali IBEH, Bahri R, Chaouachi M et al (2014) Phenolic content, antioxidant and allelopathic activities of various extracts of Thymus numidicus Poir. organs. Ind Crops Prod 62:188–195

    Article  Google Scholar 

  • Alothman M, Bhat R, Karim AA (2009) Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem 115:785–788

    Article  CAS  Google Scholar 

  • Amoo SO, Van Staden J (2013) Influence of plant growth regulators on shoot proliferation and secondary metabolite production in micropropagated Huernia hystrix. Plant Cell Tissue Organ Cult 112:249–256

    Article  CAS  Google Scholar 

  • Amoo SO, Aremu AO, Van Staden J (2012) In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell Tissue Organ Cult 111:345–358

    Article  CAS  Google Scholar 

  • Anike FN, Konan K, Olivier K, Dodo H (2012) Efficient shoot organogenesis in petioles of yam (Dioscorea spp). Plant Cell Tissue Organ Cult 111:303–313

    Article  Google Scholar 

  • Aremu AO, Bairu MW, Szüčová L et al (2012a) Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated “Williams” banana. Acta Physiol Plant 34:2265–2273

    Article  CAS  Google Scholar 

  • Aremu AO, Bairu MW, Szüčová L et al (2012b) The role of meta-topolins on the photosynthetic pigment profiles and foliar structures of micropropagated “Williams” bananas. J Plant Physiol 169:1530–1541

    Article  CAS  PubMed  Google Scholar 

  • Arora R, Bhojwani SS (1989) In vitro propagation and low temperature storage of Saussurea lappa CB Clarke—An endangered, medicinal plant. Plant Cell Rep 8:44–47

    Article  CAS  PubMed  Google Scholar 

  • Bagchi A, Oshima Y, Hikino H (1991) Neolignans and lignans of Nardostachys jatamansi roots. Planta Med 57:96–97

    Article  CAS  PubMed  Google Scholar 

  • Bahadoran Z, Mirmiran P, Azizi F (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 12:43–52

    Article  PubMed Central  PubMed  Google Scholar 

  • Bairu MW, Stirk WA, Dolezal K, Van Staden J (2007) Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ Cult 90:15–23

    Article  CAS  Google Scholar 

  • Bairu MW, Kulkarni MG, Street RA et al (2009) Studies on seed germination, seedling growth, and in vitro shoot induction of Aloe ferox Mill., a commercially important species. HortScience 44:751–756

    Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Baroja-Fernández E, Aguirreolea J, Martínková H et al (2002) Aromatic cytokinins in micropropagated potato plants. Plant Physiol Biochem 40:217–224

    Article  Google Scholar 

  • Barpete S, Khawar KM, Özcan S (2014) Differential competence for in vitro adventitous rooting of grass pea (Lathyrus sativus L.). Plant Cell Tissue Organ Cult 119:39–50

    Article  CAS  Google Scholar 

  • Baskaran P, Moyo M, Van Staden J (2014) In vitro plant regeneration, phenolic compound production and pharmacological activities of Coleonema pulchellum. S Afr J Bot 90:74–79

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Kumaria S, Diengdoh R, Tandon P (2014) Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid. Meta gene 2:489–504

    Article  PubMed Central  PubMed  Google Scholar 

  • Bhattacharyya P, Kumaria S, Job N, Tandon P (2015) Phyto-molecular profiling and assessment of antioxidant activity within micropropagated plants of Dendrobium thyrsiflorum: a threatened, medicinal orchid. Plant Cell Tissue Organ Cult 122:535–550

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Chang C-C, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J food drug Anal 10:178–182

    CAS  Google Scholar 

  • Chaudhary S, Chandrashekar KS, Pai KSR et al (2015) Evaluation of antioxidant and anticancer activity of extract and fractions of Nardostachys jatamansi DC in breast carcinoma. BMC Complement Altern Med 15:50–63

    Article  PubMed Central  PubMed  Google Scholar 

  • Chauhan RS, Nautiyal MC (2005) Commercial viability of cultivation of an endangered medicinal herb Nardostachys jatamansi at three different agroclimatic zones. Curr Sci 89:1481

    Google Scholar 

  • Chavan JJ, Gaikwad NB, Kshirsagar PR, Dixit GB (2013) Total phenolics, flavonoids and antioxidant properties of three Ceropegia species from Western Ghats of India. S Afr J Bot 88:273–277

    Article  CAS  Google Scholar 

  • Chavan JJ, Gaikwad NB, Umdale SD et al (2014) Efficiency of direct and indirect shoot organogenesis, molecular profiling, secondary metabolite production and antioxidant activity of micropropagated Ceropegia santapaui. Plant Growth Regul 72:1–15

    Article  CAS  Google Scholar 

  • Chen Y, Li F (2005) Micropropagation and callus culture of Saussurea laniceps, an alpine medicinal plant. For Stud China 7:16–19

    Article  CAS  Google Scholar 

  • Chen KK, Mukerji B (2013) Pharmacology of oriental plants: proceedings of the first international pharmacological meeting, Stockholm, 22–25 August, 1961. Elsevier, Amsterdam, pp 51–60

    Google Scholar 

  • Cheruvathur MK, Sivu AR, Pradeep NS, Thomas TD (2012) Shoot organogenesis from leaf callus and ISSR assessment for their identification of clonal fidelity in Rhinacanthus nasutus (L.) Kurz., a potent anticancerous ethnomedicinal plant. Ind Crops Prod 40:122–128

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Report 27:86–93

    Article  CAS  Google Scholar 

  • Dinis TCP, Madeira VMC, Almeida LM (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315:161–169

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Binarová P, Lcretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  Google Scholar 

  • Duke JA (2007) Duke’s handbook of medicinal plants of the bible. CRC Press, Boca Raton, pp 285–289

    Book  Google Scholar 

  • Faisal M, Alatar AA, Hegazy AK et al (2014) Thidiazuron induced in vitro multiplication of Mentha arvensis and evaluation of genetic stability by flow cytometry and molecular markers. Ind Crops Prod 62:100–106

    Article  CAS  Google Scholar 

  • Fajinmi OO, Amoo SO, Finnie JF, Van Staden J (2014) Optimization of in vitro propagation of Coleonema album, a highly utilized medicinal and ornamental plant. S Afr J Bot 94:9–13

    Article  CAS  Google Scholar 

  • Gentile A, Gutiérrez MJ, Martinez J et al (2014) Effect of meta-Topolin on micropropagation and adventitious shoot regeneration in Prunus rootstocks. Plant Cell Tissue Organ Cult 118:373–381

    Article  CAS  Google Scholar 

  • Ghimire BK, Yu CY, Chung I-M (2012) Direct shoot organogenesis and assessment of genetic stability in regenerants of Solanum aculeatissimum Jacq. Plant Cell Tissue Organ Cult 108:455–464

    Article  Google Scholar 

  • Govindachari TR, Pai BR, Purushothaman KK, Rajadurai S (1961) Structure and stereochemistry of jatamansone. Tetrahedron 12:105–112

    Article  CAS  Google Scholar 

  • Guo B, Gao M, Liu C-Z (2007) In vitro propagation of an endangered medicinal plant Saussurea involucrata Kar. et Kir. Plant Cell Rep 26:261–265

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2008) Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476:107–112

    Article  CAS  PubMed  Google Scholar 

  • Hirose Y, Yonemitsu K, Sonoda T (1978) Chemical studies on the components of Nardostachys jatamansi de Candolle (I). Shoyakugaku Zasshi 32:121–122

    CAS  Google Scholar 

  • Irvani N, Solouki M, Omidi M et al (2010) Callus induction and plant regeneration in Dorem ammoniacum D., an endangered medicinal plant. Plant Cell Tissue Organ Cult 100:293–299

    Article  Google Scholar 

  • Jack EM, Anatasova S, Verkleij JAC (2005) Callus induction and plant regeneration in the metallophyte Silene vulgaris (Caryophyllaceae). Plant Cell Tissue Organ Cult 80:25–31

    Article  CAS  Google Scholar 

  • Kaminek M, Vanĕk T, Kalendová-Kulasová A, Pilar J (1987) The effect of two cytokinins on production of stem cuttings by stock plants of Euphorbia pulcherrima Willd. and Gerbera jamesonii Hook. Sci Hortic 33:281–289

    Article  CAS  Google Scholar 

  • Kanwar K, Joseph J, Deepika R (2010) Comparison of in vitro regeneration pathways in Punica granatum L. Plant Cell Tissue Organ Cult 100:199–207

    Article  CAS  Google Scholar 

  • Kehie M, Kumaria S, Tandon P (2012) In vitro plantlet regeneration from nodal segments and shoot tips of Capsicum chinense Jacq. cv. Naga King Chili. 3. Biotech 2:31–35

    Google Scholar 

  • Kelkar SM, Krishnamurthy KV (1998) Adventitious shoot regeneration from root, internode, petiole and leaf explants of Piper colubrinum Link. Plant Cell Rep 17:721–725

    Article  CAS  Google Scholar 

  • Khan MB, Hoda MN, Ishrat T et al (2012) Neuroprotective efficacy of Nardostachys jatamansi and crocetin in conjunction with selenium in cognitive impairment. Neurol Sci 33:1011–1020

    Article  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 34:350–382

    Article  Google Scholar 

  • Loganayaki N, Siddhuraju P, Manian S (2013) Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. J Food Sci Technol 50:687–695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lyle N, Bhattacharyya D, Sur TK et al (2009) Stress modulating antioxidant effect of Nardostachys jatamansi. Indian J Biochem Biophys 46:93–98

    CAS  PubMed  Google Scholar 

  • Mathur J (1992) In vitro Morphogenesis in Nardostachys jatamansi DC.: shoot regeneration from callus derived roots. Ann Bot 70:419–422

    CAS  Google Scholar 

  • Mathur J (1993) Somatic embryogenesis from callus cultures of Nardostachys jatamansi. Plant Cell Tissue Organ Cult 33:163–169

    Article  Google Scholar 

  • Mishra AP, Saklani S, Milella L, Tiwari P (2014) Formulation and evaluation of herbal antioxidant face cream of Nardostachys jatamansi collected from Indian Himalayan region. Asian Pac J Trop Biomed 4:S679–S682

    Article  Google Scholar 

  • Molur S, Walker S (1998) Report of the workshop “conservation assessment and management plan for selected medicinal plant species of northern, northeastern and central India”(BCPP-Endangered Species Project), Zoo Outreach Organisation, Conservation Breeding Specialist Group, India. Report 62p

  • Moriguchi T, Kozaki I, Matsuta N, Yamaki S (1988) Plant regeneration from grape callus stored under a combination of low temperature and silicone treatment. Plant Cell Tissue Organ Cult 15:67–71

    Article  Google Scholar 

  • Mulliken T, Crofton P (2008) Review of the status, harvest, trade and management of seven Asian CITES-listed medicinal and aromatic plant species. BfN-Skripten, Fed. Agency Nat. Conserv. Bonn, Ger. pp 41–60

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Musselman LJ (2012) A dictionary of Bible plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Mutui TM, Mibus H, Serek M (2012) Effect of meta-topolin on leaf senescence and rooting in Pelargonium × hortorum cuttings. Postharvest Biol Technol 63:107–110

    Article  CAS  Google Scholar 

  • Nakano M, Nomizu T, Mizunashi K et al (2006) Somaclonal variation in Tricyrtis hirta plants regenerated from 1-year-old embryogenic callus cultures. Sci Hortic 110:366–371

    Article  Google Scholar 

  • Nautiyal BP, Chauhan RS, Prakash V et al (2003) Population studies for the evaluation of germplasm and threat status of the alpine medicinal herb, Nardostachys jatamansi. Plant Genet Resour Newsl 136:34–39

    Google Scholar 

  • Nayar MP, Sastry ARK (1990) Red data book of Indian plants. Botanical survey of India, Kolkata

    Google Scholar 

  • Ntui VO, Azadi P, Supaporn H, Mii M (2010) Plant regeneration from stem segment-derived friable callus of “Fonio” (Digitaria exilis (L.) Stapf.). Sci Hortic 125:494–499

    Article  CAS  Google Scholar 

  • Obae SG, West TP (2010) Nuclear DNA content of Hydrastis canadensis L. and genome size stability of in vitro regenerated plantlets. Plant Cell Tissue Organ Cult 102:259–263

    Article  CAS  Google Scholar 

  • Pandey MM, Katara A, Pandey G et al (2013) An important Indian traditional drug of ayurveda jatamansi and its substitute bhootkeshi: chemical profiling and antioxidant activity. Evid Based Complement Altern Med 2013:1–5

    Google Scholar 

  • Pietta P-G (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15:8–15

    Article  CAS  Google Scholar 

  • Pospisilova J, Synkova H, Haisel D, Semoradova S (2007) Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid (a review). Acta Hortic 748:29–38

    Article  CAS  Google Scholar 

  • Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86:929–934

    Article  CAS  Google Scholar 

  • Purnima MB, Kothiyal P (2015) A review article on phytochemistry and pharmacological profiles of Nardostachys jatamansi DC-medicinal herb. J Pharmacogn Phytochem 3:102–106

    Google Scholar 

  • Ramakrishnan M, Ceasar SA, Duraipandiyan V, Ignacimuthu S (2014) Efficient plant regeneration from shoot apex explants of maize (Zea mays) and analysis of genetic fidelity of regenerated plants by ISSR markers. Plant Cell Tissue Organ Cult 119:183–196

    Article  CAS  Google Scholar 

  • Rani D, Dantu PK (2012) Direct shoot regeneration from nodal, internodal and petiolar segments of Piper longum L. and in vitro conservation of indexed plantlets. Plant Cell Tissue Organ Cult 109:9–17

    Article  CAS  Google Scholar 

  • Rani V, Raina SN (2000) Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. In Vitro Cell Dev Biol 36:319–330

    Article  CAS  Google Scholar 

  • Rathore NS, Rai MK, Phulwaria M et al (2014) Genetic stability in micropropagated Cleome gynandra revealed by SCoT analysis. Acta Physiol Plant 36:555–559

    Article  CAS  Google Scholar 

  • Rekha K, Rao RR, Pandey R et al (2013) Two new sesquiterpenoids from the rhizomes of Nardostachys jatamansi. J Asian Nat Prod Res 15:111–116

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rival A, Beule T, Barre P et al (1997) Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis Jacq) tissue cultures and seed-derived plants. Plant Cell Rep 16:884–887

    Article  CAS  Google Scholar 

  • Roels S, Escalona M, Cejas I et al (2005) Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell Tissue Organ Cult 82:57–66

    Article  CAS  Google Scholar 

  • Shabhag SN, Mesta CK, Maheswari ML et al (1965) Constituents of Nardostachys Jatamansi and synthesis of (+) Dihydrosamidin and Visnadin from Jatamansi. Tetrahedron 21:3591

    Article  Google Scholar 

  • Sharma SK, Singh AP (2012) In vitro antioxidant and free radical scavenging activity of Nardostachys jatamansi DC. J Acupunct Meridian Stud 5:112–118

    Article  PubMed  Google Scholar 

  • Sharma PC, Yelne MB, Dennis TJ (2000) Database on medicinal plants used in ayurveda and sidha, vol 1. New Delhi CCRAS, Dept AYUSH, Minist Heal Fam Welfare, Govt India 469–495

  • Singh A (2011) Herbalism, phytochemistry and ethnopharmacology. CRC Press, Boca Raton

    Google Scholar 

  • Singh RP, Dhanalakshmi S, Agarwal R (2002) Phytochemicals as cell cycle modulators a less toxic approach in halting human cancers. Cell Cycle 1:155–160

    Article  Google Scholar 

  • Singh SR, Dalal S, Singh R et al (2013) Ascertaining clonal fidelity of micropropagated plants of Dendrocalamus hamiltonii Nees et Arn. ex Munro using molecular markers. In Vitro Cell Dev Biol 49:572–583

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 14:152–178

    Article  Google Scholar 

  • Skała E, Grąbkowska R, Sitarek P et al (2015) Rhaponticum carthamoides regeneration through direct and indirect organogenesis, molecular profiles and secondary metabolite production. Plant Cell Tissue Organ Cult 123:83–98

    Article  Google Scholar 

  • Song M-Y, Bae U-J, Lee B-H et al (2010) Nardostachys jatamansi extract protects against cytokine-induced β-cell damage and streptozotocin-induced diabetes. World J Gastroenterol WJG 16:3249

    Article  PubMed  Google Scholar 

  • Sreevidya N, Mehrotra S (2003) Spectrophotometric method for estimation of alkaloids precipitable with Dragendorff’s reagent in plant materials. J AOAC Int 86:1124–1127

    CAS  PubMed  Google Scholar 

  • Tabart J, Franck T, Kevers C, Dommes J (2015) Effect of polyamines and polyamine precursors on hyperhydricity in micropropagated apple shoots. Plant Cell Tissue Organ Cult 120:11–18

    Article  CAS  Google Scholar 

  • Thiem B, Śliwińska E (2003) Flow cytometric analysis of nuclear DNA content in cloudberry (Rubus chamaemorus L.) in vitro cultures. Plant Sci 164:129–134

    Article  CAS  Google Scholar 

  • Valero-Aracama C, Kane ME, Wilson SB et al (2006) Photosynthetic and carbohydrate status of easy-and difficult-to-acclimatize sea oats (Uniola paniculata L.) genotypes during in vitro culture and ex vitro acclimatization. In Vitro Cell Dev Biol 42:572–583

    Article  CAS  Google Scholar 

  • Ved D, Saha D, Ravikumar K, Haridasan K (2015) Nardostachys jatamansi. The IUCN Red List of Threatened Species 2015: e.T50126627A50131395. Downloaded on 26 October 2015

  • Venkatachalam L, Sreedhar RV, Bhagyalakshmi N (2007) Micropropagation in banana using high levels of cytokinins does not involve any genetic changes as revealed by RAPD and ISSR markers. Plant Growth Regul 51:193–205

    Article  CAS  Google Scholar 

  • Weining S, Langridge P (1991) Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor Appl Genet 82:209–216

    Article  CAS  PubMed  Google Scholar 

  • Werbrouck SPO, Strnad M, Van Onckelen HA, Debergh PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol Plant 98:291–297

    Article  CAS  Google Scholar 

  • Xanthopoulou MN, Fragopoulou E, Kalathara K et al (2010) Antioxidant and anti-inflammatory activity of red and white wine extracts. Food Chem 120:665–672

    Article  CAS  Google Scholar 

  • Yamauchi R, Tatsumi Y, Asano M et al (1988) Effect of metal salts and fructose on the autoxidation of methyl linoleate in emulsions. Agric Biol Chem 52:849–850

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports received from DBT research grant no. BT/PR-10533/BCE/08/622/2008 and other DBT funded projects are gratefully acknowledged. The authors would like to thank the Bioinformatics Centre, NEHU and Prof. A. Chatterjee, Dr. N. Ghosal from Department of Biotechnology and Bioinformatics, NEHU for providing the facilities carried out during the course of study.

Authors’ contributions statement

BB carried out the experiments, analyzed the data and drafted the manuscript. All the authors were involved in the designing of the experiments. SK and PT supervised the work. SK edited the manuscript. All authors read and approved the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kumaria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, B., Kumaria, S., Choudhury, H. et al. Assessment of genetic homogeneity and analysis of phytomedicinal potential in micropropagated plants of Nardostachys jatamansi, a critically endangered, medicinal plant of alpine Himalayas. Plant Cell Tiss Organ Cult 124, 331–349 (2016). https://doi.org/10.1007/s11240-015-0897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0897-x

Keywords

Navigation