Skip to main content
Log in

Investigation of the response to salinity and to oxidative stress of interspecific potato somatic hybrids grown in a greenhouse

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Salinity is one of the major stresses threatening potato plants (Solanum tuberosum L.) by affecting their growth and yield. It leads to oxidative stress by the production of reactive oxygen species responsible for alteration of macromolecules. To improve the tolerance of potato to salt stress, we have used somatic hybridization to produce interspecific potato hybrids by protoplast fusion between the BF15 variety and the wild Solanum berthaultii species. These hybrids showed an improved tolerance to salt stress when cultivated in vitro. The present work aims to analyze the response of the hybrids to salt stress in greenhouse conditions. Thus, the development of plants and their antioxidant capacity in response to salt stress were followed. All hybrids showed better growth and stable chlorophyll content compared to those of the BF15 parent plant. Membrane lipid peroxidation, evaluated by measuring the malondialdehyde accumulation (MDA) in plant organs, showed low levels in the hybrids. Higher antioxidant enzyme activities were measured in the roots of the hybrids when compared to those of the BF15 parent. These hybrids also showed an improved control of Na+ accumulation and a stable K+/Na+ ratio. These results therefore confirm the better tolerance of these hybrids to salt stress when compared to their BF15 parent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Abideen Z, Koyro HW, Huchzermeyer B, Ahmed MZ, Gul B, Khan MA (2014) Moderate salinity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation. Environ Exp Bot 105:70–76

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Akossiwoa Quashie ML, Nato A, Akpagana K (2004) Caractérisation précoce de la tolérance à la salinité et à la sécheresse de deux hybrides somatiques de pomme de terre (Solanum tuberosum L., Solanaceae) et de leurs parents. Acta Bot Gall 151:127–138

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24(1):1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183

    Article  CAS  PubMed  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Eness-Filho J, Medeiros JVR, Gomes-Filho E (2006) Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162:1114–1122

    Article  Google Scholar 

  • Baby J, Jini D (2011) Development of salt stress-tolerant plants by gene manipulation of antioxidant enzymes. Asian J Agric Res 5:17–27

    Article  Google Scholar 

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    Article  CAS  PubMed  Google Scholar 

  • Ben Mansour R, Lassoued S, Gargouri B, El Gaid A, Attia H, Fakhfakh F (2008) Increased levels of autoantibodies against catalase and superoxide dismutase associated with oxidative stress in patients with rheumatoid arthritis and systemic lupus erythematosus. Scand J Rheumatol 37(2):103–108

    Article  CAS  PubMed  Google Scholar 

  • Bidani A, Nouri-Ellouz O, Lakhoua L, Sihachakr D, Cheniclet C, Mahjoub A, Drira N, Gargouri-Bouzid R (2007) Interspecific potato somatic hybrids between Solanum berthaultii and Solanum tuberosum L. showed recombinant plastome and improved tolerance to salinity. Plant Cell Tissue Organ Cult 91:179–189

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouaziz E (1980) Tolérance à la salure de la pomme de terre. Physiol Vég 18:11–17

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Caldiz DO (1994) Genetic improvement and associated physiological changes in the potato. In: Slafer GA (ed) Genetic improvement of field crops. Marcel Dekker Inc, New York, pp 361–411

    Google Scholar 

  • Chen X, Song B, Liu J, Yang J, He T, Lin Y, Zhang H, Xie C (2012) Modulation of gene expression in cold-induced sweetening resistant potato species Solanum berthaultii exposed to low temperature. Mol Genet Genomics 287:411–421

    Article  CAS  PubMed  Google Scholar 

  • Costa PHA, Azevedo-Neto AD, Bezerra MA, Prisco JT, Gomes-Filho E (2005) Antioxydant- enzymatic system of two sorghum genotypes differing in salt tolerance. Braz J Plant Physiol 17:353–361

    Article  Google Scholar 

  • Donnelly DJ, Prasher SO, Patel RM (2007) Towards the development of salt-tolerant potato. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, Mackerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology advances and perspectives. Elsevier, Amsterdam, pp 415–437

    Chapter  Google Scholar 

  • Floh L, Gunzler WA (1984) Glutathione peroxidase. Methods Enzymol 105:115–121

    Google Scholar 

  • García-Valenzuela X, García-Moya E, Rascón-Cruz Q, Herera-Estrela L, Aguado-Santacruz GA (2005) Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophylic cells. J Plant Physiol 162:650–661

    Article  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Taifeh-Noori M, Oustan S, Moghaddam M (2009) Response of soybean cultivars to salinity stress. J Food Agric Environ 7:401–404

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hachicha M (2007) Les sols salés et leur mise en valeur en Tunisie. Sécheresse 18(1):45–50

    Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Jiménez A, Hernández JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed Central  PubMed  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85(3):237–254

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Jini D, Sujatha S (2010) Biological and physiological perspectives of specificity in abiotic salt stress response from various rice plants. Asian J Agric Sci 2(3):99–105

    Google Scholar 

  • Kahlaoui B, Hachicha M, Rejeb S, Misle E, Rouaissi M, Rejeb MN, Hanchi B (2011) Effect of saline water on tomato under subsurface drip irrigation: yield and fruit quality. Aust J Basic Appl Sci 5(9):517–529

    CAS  Google Scholar 

  • Kashyap PS, Panda RK (2003) Effect of irrigation scheduling on potato crop parameters under water stressed conditions. Agric Water Manag 59:49–66

    Article  Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81–89

    Article  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Khan NA (2012) Variation in salt tolerance of wheat cultivars: role of glycinebetaine and ethylene. Pedosphere 22(6):746–754

    Article  CAS  Google Scholar 

  • Kukreja S, Nandwal AS, Kumar N, Sharma SK, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2, scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49:305–308

    Article  CAS  Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Song B, Zhang H, Li XQ, Xie C, Liu J (2010) Cloning and molecular characterization of putative invertase inhibitor genes and their possible contributions to cold-induced sweetening of potato tubers. Mol Genet Genomics 284:147–159

    Article  CAS  PubMed  Google Scholar 

  • Long L, Gao W, Xu L, Liu M, Luo X, He X, Yang X, Zhang X, Zhu L (2014) GbMPK3, a mitogen-activated protein kinase from cotton, enhances drought and oxidative stress tolerance in tobacco. Plant Cell Tissue Organ Cult 116(2):153–162

    Article  CAS  Google Scholar 

  • Marvin JS, Schreiter ER, Echevarria IM, Looger LL (2011) A genetically encoded, high-signal-to-noise maltose sensor. Proteins 79:3025–3036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531(2):157–161

    Article  PubMed  Google Scholar 

  • Morel G, Wetmore RH (1951) Fern callus tissue culture. Am J Bot 38:141–143

    Article  CAS  Google Scholar 

  • Mostan Z, Lemer HR, Reinhold L (1988) Dependence of chlorophyll synthesis on NaCl or osmotic stress in NaCl-adapted tobacco cells. Plant Physiol Biochem 26:29–34

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168(8):807–815

    Article  CAS  PubMed  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noctor G, Veljovic-Jovanovic SD, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot (Lond) 89:841–850

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35(2):454–484

    Article  CAS  PubMed  Google Scholar 

  • Ochatt SJ, Marconi PL, Radice S, Arnozis PA, Caso OH (1999) In vitro recurrent selection of potato: production and characterization of salt tolerant cell lines and plants. Plant Cell Tissue Organ Cult 55:1–8

    Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    Article  CAS  Google Scholar 

  • Ruiz JM, Blasco B, Rivero RM, Romero L (2005) Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Physiol Plant 124:465–475

    Article  CAS  Google Scholar 

  • Sabbah S, Tal M (1990) Development of callus and suspension cultures of potato resistant to NaCl and mannitol and their response to stress. Plant Cell Tissue Organ Cult 21:119–128

    Article  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seckin B, Sekmen AH, Turkan I (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul 28(1):12–20

    Article  CAS  Google Scholar 

  • Serraf I, Sihachakr D, Ducreux G, Brown SC, Allot M, Barghi N, Rossignol L (1991) Interspecific somatic hybridization in potato by protoplast electrofusion. Plant Sci 76:115–126

    Article  Google Scholar 

  • Shahzad A, Iqbal M, Asif M, Hirani AH, Goyal A (2013) Growing wheat on saline lands: can a dream come true? Aust J Crop Sci 7(4):515–524

    Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 122:487–494

    Article  Google Scholar 

  • Shen Z, Ding M, Sun J, Deng S, Zhao R, Wang M, Ma X, Wang F, Zhang H, Qian Z, Hu Y, Yu R, Shen X, Chen S (2013) Overexpression of PeHSF mediates leaf ROS homeostasis in transgenic tobacco lines grown under salt stress conditions. Plant Cell Tissue Organ Cult 115(3):299–308

    Article  CAS  Google Scholar 

  • Simko I, Jansky SH, Stephenson S, Spooner DM (2007) Genetics of resistance to pests and disease. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, Mackerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology advances and perspectives. Elsevier, Amsterdam, pp 117–155

    Chapter  Google Scholar 

  • Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U (2008) Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environ 54:529–536

    Article  CAS  Google Scholar 

  • Smyda P, Jakuczun H, Dębski K, Śliwka J, Thieme R, Nachtigall M, Wasilewicz-Flis L, Zimnoch-Guzowska E (2013) Development of somatic hybrids Solanum × michoacanum Bitter. (Rydb.) (+) S. tuberosum L. and autofused 4x S. × michoacanum plants as potential sources of late blight resistance for potato breeding. Plant Cell Rep 32:1231–1241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sobhanian H, Aghaei K, Komatsu S (2011) Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops? J Proteom 74:1323–1337

    Article  CAS  Google Scholar 

  • Solomon-Blackburn RM, Barker H (2001) Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches. Heredity 86:17–35

    Article  CAS  PubMed  Google Scholar 

  • Surekha C, Nirmala Kumari K, Aruna LV, Suneetha G, Arundhati A, Kavi Kishor PB (2014) Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell Tissue Organ Cult 116(1):27–36

    Article  CAS  Google Scholar 

  • Takahashi R, Liu S, Takano T (2007) Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants. J Exp Bot 58:4387–4395

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Cai H, Zhai H, Luo X, Wang Z, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tissue Organ Cult 118(1):77–86

    Article  CAS  Google Scholar 

  • Tester N, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:1–25

    Article  Google Scholar 

  • Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T (2008) Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theor Appl Genet 116(5):691–700

    Article  CAS  PubMed  Google Scholar 

  • Thieme R, Rakosy-Tican E, Nachtigall M, Schubert J, Hammann T, Antonova O, Gavrilenko T, Heimbach U, Thieme T (2010) Characterization of the multiple resistance traits of somatic hybrids between Solanum cardiophyllum Lindl. and two commercial potato cultivars. Plant Cell Rep 29:1187–1201

    Article  CAS  PubMed  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    Article  CAS  PubMed  Google Scholar 

  • Tounekti T, Ahmedou M, Vadel-Marta O, Habib K, Munné-Bosch S (2011) Salt-induced oxidative stress in rosemary plants: damage or protection? Environ Exp Bot 71:298–305

    Article  CAS  Google Scholar 

  • Väänänen D, Ikonen T, Rokka VM, Kuronen P, Serimaa R, Ollilainen V (2005) Influence of incorporated wild Solanum genomes on potato properties in terms of starch nanostructure and glycoalkaloid content. J Agric Food Chem 53:5313–5325

    Article  PubMed  Google Scholar 

  • Xu SX, Cai DF, Tan FQ, Fang YN, Xie KD, Grosser JW, Guo WW (2014) Citrus somatic hybrid: an alternative system to study rapid structural and epigenetic reorganization in allotetraploid genomes. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-014-0551-z

    Google Scholar 

Download references

Acknowledgments

This work was financed by the Tunisian Ministry of Higher Education and Scientific Research. Hybrid production was performed at the Laboratory of Experimental Plant Morphogenesis, University of Southern Paris, Building 360, Orsay, France under the supervision of Dr. Darasinh Sihachakr. The authors are grateful to Dr. Anne-Lise Haenni from Institute Jacques (France) for reading and improving the manuscript and to Moufida Bouaziz-Kanoun from the “Institut Supérieur d’Administration des Affaires de Sfax” (Tunisia) for editing the paper. They wish to extend their thanks to Mr. Jamil Jaoua, Founder and Former Head of the English Unit at the Sfax Faculty of Science for a final proofreading of this paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Jbir-Koubaa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jbir-Koubaa, R., Charfeddine, S., Ellouz, W. et al. Investigation of the response to salinity and to oxidative stress of interspecific potato somatic hybrids grown in a greenhouse. Plant Cell Tiss Organ Cult 120, 933–947 (2015). https://doi.org/10.1007/s11240-014-0648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0648-4

Keywords

Navigation