Skip to main content
Log in

Levels of endogenous abscisic acid and indole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

An Erratum to this article was published on 08 October 2011

Abstract

Osmotic stress and endogenous hormone levels may have a role in shoot organogenesis, but a systematic study has not yet to investigate the links. We evaluated the changes of the endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA) levels in rice (Oryza sativa L. cv. Tainan 5) callus during shoot organogenesis induced by exogenous plant growth regulator treatments or under osmotic stress. Non-regenerable callus showed low levels of endogenous ABA and IAA, with no fluctuation in level during the period evaluated. The addition of 100 μM ABA or 2 mM anthranilic acid (IAA precursor) into Murashige and Skoog basal induction medium containing 10 μM 2,4-D enhanced the regeneration frequency slightly, to 5 and 35%, respectively, and their total cellular ABA or IAA levels were increased significantly, correspondingly to the treatments. However, the regeneration frequency was greatly increased to 80% after treatment with 0.6 M sorbitol or 100 μM ABA and 2 mM anthranilic acid combined. Both treatments produced high levels of total cellular ABA and IAA at the callus stage, which was quickly decreased on the first day after transfer to regeneration medium. Thus, osmotic stress-induced simultaneous accumulation of endogenous ABA and IAA is involved in shoot regeneration in rice callus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

An:

Anthranilic acid

ELISA:

Enzyme-linked immunosorbent assay

FW:

Fresh weight

HPLC:

High-performance liquid chromatography

IAA:

Indole-3-acetic acid

MS:

Murashige and Skoog medium

NAA:

Naphthaleneacetic acid

References

  • Barreto R, Nieto-Sotelo J, Cassab GI (2010) Influence of plant growth regulators and water stress on ramet induction, rosette engrossment, and fructan accumulation in Agave tequilana Weber var. Azul. Plant Cell Tissue Organ Cult 103:93–101

    Article  CAS  Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48:51–66

    Article  PubMed  CAS  Google Scholar 

  • Belefant H, Fong F (1991) Abscisic acid biosynthesis in Zea mays embryos: influence of tetcyclacis and regulation by osmotic potential. Plant Sci 78:19–25

    Article  CAS  Google Scholar 

  • Brown C, Brooks FJ, Pearson D, Mathias RJ (1989) Control of embryogenesis and organogenesis in immature wheat embryo callus using increased medium osmolarity and abscisic acid. J Plant Physiol 133:727–733

    CAS  Google Scholar 

  • Centeno ML, Rodríguez R, Berros B, Rodríguez A (1997) Endogenous hormonal content and somatic embryogenic capacity of Corylus avellana L. cotyledons. Plant Cell Rep 17:139–144

    Article  CAS  Google Scholar 

  • Charriére F, Sotta B, Miginiac E, Hahne G (1999) Induction of adventitious shoots or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: variation of endogenous hormone levels. Plant Physiol Biochem 37:751–757

    Article  Google Scholar 

  • Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95:288–293

    Article  PubMed  CAS  Google Scholar 

  • Etienne H, Montoro P, Michaux-Ferriere N, Carron MP (1993a) Effects of desiccation, medium osmolarity and abscisic acid on the maturation of Hevea brasiliensis somatic embryos. J Exp Bot 44:1613–1619

    Article  CAS  Google Scholar 

  • Etienne H, Sotta B, Montoro P, Miginiac E, Carron MP (1993b) Relations between exogenous growth regulators and endogenous indole-3-acetic acid and abscisic acid in the expression of somatic embryogenesis in Hevea brasiliensis (Mull. Arg.). Plant Sci 88:91–96

    Article  CAS  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Feng JC, Yu XM, Shang XL, Li JD, Wu YX (2010) Factors influencing efficiency of shoot regeneration in Ziziphus jujube Mill. ‘Huizao’. Plant Cell Tissue Organ Cult 101:111–117

    Article  CAS  Google Scholar 

  • Fernando SC, Gamage CKA (2000) Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci 151:193–198

    Article  PubMed  CAS  Google Scholar 

  • García-Martín G, Manzanera JA, González-Benito ME (2005) Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos. Plant Cell Tissue Organ Cult 80:171–177

    Article  Google Scholar 

  • Grieb B, Schafer F, Imani J, Nezamabadi-Mashayekhi K, Arnholdt-Schmitt B, Neumann KH (1997) Changes in soluble proteins and phytohormone concentrations of cultured carrot petiole explants during induction of somatic embryogenesis (Daucus carota L.). J Appl Bot 71:94–103

    CAS  Google Scholar 

  • Guiderdoni E, Merot B, Eksomtramage T, Paulet F, Feldmann P, Glaaszmann JC (1995) Somatic embryogenesis in sugarcane (Saccharum species). In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seed II. Biotechnology in agriculture and forestry, vol 31. Springer-Verlag, Berlin, pp 92–113

    Chapter  Google Scholar 

  • Hornung R (1995) Micropropagation of Cocos nucifera L. from plumular tissues excised from mature zygotic embryos. Plant Rech Dev 2:38–41

    Google Scholar 

  • Huang WL, Liu LF (2002) Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress. Bot Bull Acad Sinica 43:107–113

    CAS  Google Scholar 

  • Huang WL, Tsung YC, Liu LF (2002) Osmotic stress promotes shoot regeneration in immature embryo-derived callus of rice (Oryza sativa L.). J Agric Assoc China 3:76–86

    Google Scholar 

  • Huang WL, Wang YC, Lee PD, Liu LF (2006) The regenerability of rice callus is closely related to starch metabolism. Taiwan J Agric Chem Food Sci 44:100–107

    CAS  Google Scholar 

  • Ivanova A, Velcheva M, Denchev P, Atanassov A, Van Onckelen HA (1994) Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol Plant 92:85–89

    Article  CAS  Google Scholar 

  • Jiang H, Chen J, Gao XL, Wan J, Wang PR, Wang XD, Xu ZJ (2006) Effect of ABA on rice callus and development of somatic embryo and plant regeneration. Acta Agron Sinica 32:1379–1383

    CAS  Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormone and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  Google Scholar 

  • Jiménez VM, Bangerth F (2001a) Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol Plant 111:389–395

    Article  PubMed  Google Scholar 

  • Jiménez VM, Bangerth F (2001b) Endogenous hormone concentrations and embryogenic callus development in wheat. Plant Cell Tissue Organ Cult 67:37–46

    Article  Google Scholar 

  • Jiménez VM, Bangerth F (2001c) Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro. Plant Sci 160:247–257

    Article  PubMed  Google Scholar 

  • Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645

    Article  PubMed  CAS  Google Scholar 

  • Lakshmanan P, Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biol 2:136–148

    Article  CAS  Google Scholar 

  • Magnaval C, Noirot M, Verdeil JL, Blattes A, Huet C, Grosdemange F, Beulé T, Buffard-Morel J (1997) Specific nutrientional requirements of coconut calli (Cocos nucifera L.) during somatic embryogenesis induction. J Plant Physiol 150:719–728

    Article  CAS  Google Scholar 

  • Maldiney R, Leroux B, Sabbagh I, Sotta B, Sossuntzov L, Miginiac E (1986) A biotin-avidin-based enzyme immunoassay to quantify three phytohormones: auxin, abscisic acid and zeatin-riboside. J Immunol Meth 90:151–158

    Article  CAS  Google Scholar 

  • Mercier H, Souza BM, Kraus JE, Hamasaki RM, Sotta B (2003) Endogenous auxin and cytokinin contents associated with shoot formation in leaves of pineapple cultured in vitro. Braz J Plant Physiol 15:107–112

    Article  CAS  Google Scholar 

  • Michalczuk L, Druart P (1999) Indole-3-acetic acid metabolism in hormone-autotrophic, embryogenic callus of Inmil® cherry rootstock (Prunus incisa × serrula ‘GM 9’) and in hormone-dependent, nonembryogenic calli of Prunus incisa × serrula and Prunus domestica. Physiol Plant 107:426–432

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakagawa H, Saijyo T, Yamauchi N, Shigyo M, Kako S, Ito A (2001) Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L.) expanded cotyledon. Sci Hort 90:85–92

    Article  CAS  Google Scholar 

  • Pan ZY, Zhu SP, Guan R, Deng XX (2010) Identification of 2,4-D-responsive proteins in embryogenic callus of Valencia sweet orange (Citrus sinensis Osbeck) following osmotic stress. Plant Cell Tissue Organ Cult 103:145–153

    Article  CAS  Google Scholar 

  • Park SY, Cho HM, Moon HK, Kim YW, Paek KY (2011) Genotypic variation and aging effects on the embryogenic capacity of Kalopanax septemlobus. Plant Cell Tissue Organ Cult 105:265–270

    Article  Google Scholar 

  • Rakshit S, Rashid Z, Sekhar JC, Fatma T, Dass S (2010) Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant Cell Tissue Organ Cult 100:31–37

    Article  Google Scholar 

  • Senger S, Mock HP, Conrad U, Manteuffel R (2001) Immunomodulation of ABA function affects early events in somatic embryo development. Plant Cell Rep 20:112–120

    Article  CAS  Google Scholar 

  • Silva TD (2010) Indica rice anther culture: can the impasse be surpassed? Plant Cell Tissue Organ Cult 100:1–11

    Article  CAS  Google Scholar 

  • Souza BM, Kraus JE, Endres L, Mercier H (2003) Relationships between endogenous hormonal levels and axillary bud development of Ananas comosus nodal segments. Plant Physiol Biochem 41:733–739

    Article  CAS  Google Scholar 

  • Sugiyama M (1999) Organogenesis in vitro. Curr Opin Plant Biol 2:61–64

    Article  PubMed  CAS  Google Scholar 

  • Sun YL, Hong SK (2010) Effects of plant growth regulators and l-glutamic acid on shoot organogenesis in the halophyte Leymus chinensis (Trin.). Plant Cell Tissue Organ Cult 100:317–328

    Article  CAS  Google Scholar 

  • Suzuki RM, Kerbauy GB, Zaffari GR (2004) Endogenous hormonal levels and growth of dark-incubated shoots of Catasetum fimbriatum. J Plant Physiol 161:929–935

    Article  PubMed  CAS  Google Scholar 

  • Valdés AE, Ordás RJ, Fernández B, Centeno ML (2001) Relationships between hormonal contents and the organogenic response in Pinus pinea cotyledons. Plant Physiol Biochem 39:377–384

    Article  Google Scholar 

  • Zhang YF, Zhou JH, Wu T, Cao JS (2008) Shoot regeneration and the relationship between organogenic capacity and endogenous hormonal contents in pumpkin. Plant Cell Tissue Organ Cult 93:323–331

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Council of Agriculture, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Lii Huang.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11240-011-0064-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, WL., Lee, CH. & Chen, YR. Levels of endogenous abscisic acid and indole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress. Plant Cell Tiss Organ Cult 108, 257–263 (2012). https://doi.org/10.1007/s11240-011-0038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-0038-0

Keywords

Navigation