Skip to main content
Log in

Theoretical insights into nature of π-hole interactions between triel centers (B and Al) and radical methyl as a potential electron donor: Do single-electron triel bonds exist?

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

UMP2/aug-cc-pVTZ calculations are carried out to investigate the geometry, interaction energy and bonding properties of single-electron triel bond (SETB) interactions in binary X3Z···CH3 complexes, where Z = B, Al and X = H, F, Cl, Br, CN, NC, OH and CH3. The estimated binding distances are found to be in the range of 2.129–3.321 and 2.358–2.555 Å for X3B···CH3 and X3Al···CH3 complexes, respectively, which are much smaller than the sum of the van der Waals radii of corresponding interacting atoms. The strength of SETBs strongly depends upon the nature of the Z and X substituents. For a given Z atom, the presence of electron-withdrawing groups such as F or CN in ZX3 molecule tends to increase the absolute value of interaction energy, while a reverse trend is seen for the electron-donating groups (OH and CH3). According to quantum theory of atoms in molecule, all strong SETB interactions indicate a partially covalent character. The analysis of the intermolecular orbital interactions in the title complexes also indicates that the amount of charge transfer from the single-electron occupied p orbital of radical methyl to the empty p orbital of Z atom increases in the order CN > NC > H > CH3 > F > Cl > Br > OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, New York

    Google Scholar 

  2. Gavezzotti A (2008) Non-conventional bonding between organic molecules. The ‘halogen bond’ in crystalline systems. Mol Phys 106:1473–1485

    Article  CAS  Google Scholar 

  3. Metrangolo P, Resnati G, Pilati T, Biella S (2008) Halogen bonding in crystal engineering. Springer-Verlag, Berlin, Germany

    Book  Google Scholar 

  4. Bauzá A, Quiñonero D, Deyà PM, Frontera A (2013) Halogen bonding versus chalcogen and pnicogen bonding: a combined Cambridge structural database and theoretical study. CrystEngComm 15:3137–3144

    Article  Google Scholar 

  5. Esrafili MD (2013) A theoretical investigation of the characteristics of hydrogen/halogen bonding interactions in dibromo-nitroaniline. J Mol Model 19:1417–1427

    Article  CAS  Google Scholar 

  6. Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen bonded complexes of PO2X (X = F, Cl) with nitrogen bases. J Phys Chem A 117:10497–10503

    Article  CAS  Google Scholar 

  7. Del Bene JE, Alkorta I, Elguero J (2014) Pnicogen-bonded anionic complexes. J Phys Chem A 118:3386–3392

    Article  Google Scholar 

  8. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  9. Murray JS, Lane P, Clark T, Politzer P (2007) σ-Hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  10. Politzer P, Murray JS, Lane P (2007) σ-Hole bonding and hydrogen bonding: competitive interactions. Int J Quantum Chem 107:3046–3052

    Article  CAS  Google Scholar 

  11. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) Blue shifts vs red shifts in σ-hole bonding. J Mol Model 14:699–704

    Article  CAS  Google Scholar 

  12. Murray JS, Lane P, Politzer P (2008) Simultaneous σ-hole and hydrogen bonding by sulfur-and selenium-containing heterocycles. Int J Quantum Chem 108:2770–2781

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS, Concha MC (2008) σ-Hole bonding between like atoms; a fallacy of atomic charges. J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  14. Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  15. Murray JS, Lane P, Nieder A, Klapötke TM, Politzer P (2010) Enhanced detonation sensitivities of silicon analogs of PETN: reaction force analysis and the role of σ-hole interactions. Theor Chem Acc 127:345–354

    Article  CAS  Google Scholar 

  16. Palusiak M (2010) On the nature of halogen bond—the Kohn–Sham molecular orbital approach. J Mol Struct Theochem 945:89–92

    Article  CAS  Google Scholar 

  17. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) The fluorine atom as a halogen bond donor, viz. a positive site. CrystEngComm 13:6593–6596

    Article  CAS  Google Scholar 

  18. Pavan MS, Prasad KD, Row TG (2013) Halogen bonding in fluorine: experimental charge density study on intermolecular FF and FS donor–acceptor contacts. Chem Commun 49:7558–7560

    Article  CAS  Google Scholar 

  19. Kolář M, Hostaš J, Hobza P (2014) The strength and directionality of a halogen bond are co-determined by the magnitude and size of the σ-hole. Phys Chem Chem Phys 16:9987–9996

    Article  Google Scholar 

  20. Wang W, Ji B, Zhang Y (2009) Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A 113:8132–8135

    Article  Google Scholar 

  21. Li Q-Z, Li R, Guo P, Li H, Li W-Z, Cheng J-B (2012) Competition of chalcogen bond, halogen bond, and hydrogen bond in SCS HOX and SeCSe HOX (X = Cl and Br) complexes. Comput Theor Chem 980:56–61

    Article  CAS  Google Scholar 

  22. Adhikari U, Scheiner S (2014) Effects of Charge and Substituent on the S···N Chalcogen Bond. J Phys Chem A 118:3183–3192

    Article  CAS  Google Scholar 

  23. Esrafili MD, Mohammadian-Sabet F (2015) Bifurcated chalcogen bonds: a theoretical study on the structure, strength and bonding properties. Chem Phys Lett 634:210–215

    Article  CAS  Google Scholar 

  24. Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen-bonded cyclic trimers (PH2X)3 with X = F, Cl, OH, NC, CN, CH3, H, and BH2. J Phys Chem A 117:4981–4987

    Article  CAS  Google Scholar 

  25. Alkorta I, Elguero J, Solimannejad M (2014) Single electron pnicogen bonded complexes. J Phys Chem A 118:947–953

    Article  CAS  Google Scholar 

  26. Alkorta I, Sanchez-Sanz G, Elguero J, Del Bene JE (2014) Pnicogen bonds between X horizontal line PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases. J Phys Chem A 118:1527–1537

    Article  CAS  Google Scholar 

  27. Alkorta I, Elguero J, Grabowski SJ (2015) Pnicogen and hydrogen bonds: complexes between PH3X(+) and PH2X systems. Phys Chem Chem Phys 17:3261–3272

    Article  CAS  Google Scholar 

  28. Grabowski SJ (2014) Tetrel bond–σ-hole bond as a preliminary stage of the SN 2 reaction. Phys Chem Chem Phys 16:1824–1834

    Article  CAS  Google Scholar 

  29. Esrafili MD, Mohammadirad N, Solimannejad M (2015) Tetrel bond cooperativity in open-chain (CH3CN)n and (CH3NC)n clusters (n = 2–7): an ab initio study. Chem Phys Lett 628:16–20

    Article  CAS  Google Scholar 

  30. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  31. Smith EL, Sadowsky D, Cramer CJ, Phillips JA (2011) Structure, bonding, and energetic properties of nitrile-borane complexes: RCN-BH3. J Phys Chem A 115:1955–1963

    Article  CAS  Google Scholar 

  32. Esrafili MD (2012) Characteristics and nature of the intermolecular interactions in boron-bonded complexes with carbene as electron donor: an ab initio, SAPT and QTAIM study. J Mol Model 18:2003–2011

    Article  CAS  Google Scholar 

  33. Buchberger AR, Danforth SJ, Bloomgren KM, Rohde JA, Smith EL, Gardener CC, Phillips JA (2013) Condensed-phase effects on the structural properties of FCH2CN-BF3 and ClCH2CN-BF3: a matrix-isolation and computational study. J Phys Chem B 117:11687–11696

    Article  CAS  Google Scholar 

  34. Wrass JP, Sadowsky D, Bloomgren KM, Cramer CJ, Phillips JA (2014) Quantum chemical and matrix-IR characterization of CH3CN–BCl3: a complex with two distinct minima along the B-N bond potential. Phys Chem Chem Phys 16:16480

    Article  CAS  Google Scholar 

  35. Grabowski SJ (2014) Boron and other Triel Lewis Acid Centers: from Hypovalency to Hypervalency. ChemPhysChem 15:2985–2993

    Article  CAS  Google Scholar 

  36. Grabowski SJ (2015) π-Hole bonds: boron and Aluminum Lewis Acid Centers. ChemPhysChem 16:1470–1479

    Article  CAS  Google Scholar 

  37. Phillips JA, Giesen DJ, Wells NP, Halfen JA, Knutson CC, Wrass JP (2005) Condensed-phase effects on the structural properties of C6H5CN-BF3 and (CH3)3CCN-BF3: IR spectra, crystallography, and computations. J Phys Chem A 109:8199–8208

    Article  CAS  Google Scholar 

  38. Buchberger AR, Danforth SJ, Bloomgren KM, Rohde JA, Smith EL, Gardener CCA, Phillips JA (2013) Condensed-phase effects on the structural properties of FCH2CN-BF3 and ClCH2CN-BF3: a matrix-isolation and computational study. J Phys Chem B 117:11687–11696

    Article  CAS  Google Scholar 

  39. Smith EL, Sadowsky D, Phillips JA, Cramer CJ, Giesen DJ (2010) A short yet very weak dative bond: structure, bonding, and energetic properties of N2–BH3. J Phys Chem A 114:2628–2636

    Article  CAS  Google Scholar 

  40. Eigner AA, Rohde JA, Knutson CC, Phillips JA (2007) IR spectrum of CH3CN-BF3 in solid neon: matrix effects on the structure of a Lewis acid–base complex. J Phys Chem B 111:1402–1407

    Article  CAS  Google Scholar 

  41. Wrass JP, Sadowsky D, Bloomgren KM, Cramer CJ, Phillips JA (2014) Quantum chemical and matrix-IR characterization of CH3CN-BCl3: a complex with two distinct minima along the B–N bond potential. Phys Chem Chem Phys 16:16480–16491

    Article  CAS  Google Scholar 

  42. Leopold KR, Canagaratna M, Phillips JA (1997) Partially bonded molecules from the solid state to the stratosphere. Acc Chem Res 30:57–64

    Article  CAS  Google Scholar 

  43. Phillips JA, Cramer CJ (2007) BN distance potential of CH3CN-BF3 revisited: resolving the experiment-theory structure discrepancy and modeling the effects of low-dielectric environments. J Phys Chem B 111:1408–1415

    Article  CAS  Google Scholar 

  44. Grabowski SJ (2015) Triel bonds, π-hole-π-electrons interactions in complexes of boron and aluminium trihalides and trihydrides with acetylene and ethylene. Molecules 20:11297–11316

    Article  CAS  Google Scholar 

  45. Wang Y-H, Zou J-W, Lu Y-X, Yu Q-S, Xu H-Y (2007) Single-electron halogen bond: ab initio study. Int J Quantum Chem 107:501–506

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford, CT, USA

    Google Scholar 

  47. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  48. Bulat F, Toro-Labbé A, Brinck T, Murray J, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  49. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  50. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102

    Article  Google Scholar 

  51. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  52. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686

    Article  CAS  Google Scholar 

  53. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM2000. J Comput Chem 22:545–559

    Article  Google Scholar 

  54. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  55. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  56. Murray JS, Macaveiu L, Politzer P (2014) Factors affecting the strengths of σ-hole electrostatic potentials. J Comput Sci 5:590–596

    Article  Google Scholar 

  57. Politzer P, Murray JS, Janjić GV, Zarić SD (2014) σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystals 4:12–31

    Article  Google Scholar 

  58. Li Q, Guo X, Yang X, Li W, Cheng J, Li H-B (2014) A σ-hole interaction with radical species as electron donors: does single-electron tetrel bonding exist? Phys Chem Chem Phys 16:11617–11625

    Article  CAS  Google Scholar 

  59. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  60. Esrafili MD, Mohammadian-Sabet F (2015) Does single-electron chalcogen bond exist? Some theoretical insights. J Mol Model 21:65

    Article  Google Scholar 

  61. Esrafili MD, Mohammadian-Sabet F (2015) Pnicogen–pnicogen interactions in O2XP:PH2Y complexes (X = H, F, CN; Y = H, OH, OCH3, CH3, NH2). Chem Phys Lett 638:122–127

    Article  CAS  Google Scholar 

  62. Esrafili MD, Mohammadian-Sabet F (2015) An ab initio study on chalcogen–chalcogen bond interactions in cyclic (SHX)3 complexes (X = F, Cl, CN, NC, CCH, OH, OCH3, NH2). Chem Phys Lett 628:71–75

    Article  CAS  Google Scholar 

  63. Koch U, Popelier P (1995) Characterization of CHO hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esrafili, M.D., Mohammadian-Sabet, F. Theoretical insights into nature of π-hole interactions between triel centers (B and Al) and radical methyl as a potential electron donor: Do single-electron triel bonds exist?. Struct Chem 27, 1157–1164 (2016). https://doi.org/10.1007/s11224-015-0739-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0739-9

Keywords

Navigation