Skip to main content

Advertisement

Log in

Does single-electron chalcogen bond exist? Some theoretical insights

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ab initio calculations have been carried out to investigate the σ-hole interaction in XHY···CH3 and XHY···CH2CH3 complexes, where X = F, Cl, Br and Y = S, Se. This interaction, termed “single-electron chalcogen bond interaction” was analyzed in terms of geometric, interaction energies and electronic features of the complexes. This interaction is a weak one, with an interaction energy that varies from a minimum of -1.7 kcal mol-1 for BrHS···CH3 to -6.0 kcal mol-1 for FHSe···CH2CH3 at the CCSD(T)/aug-cc-pVTZ level of theory. Energy decomposition analysis indicated that the dominant attraction energy originates in the electrostatic term which is larger for the Se complexes than for the S counterparts. However, the attractive polarization and dispersion components also make an important contribution to the interaction energy for the single-electron chalcogen bond interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  2. Esrafili MD, Behzadi H, Hadipour NL (2008) 14N and 17O electric field gradient tensors in benzamide clusters: theoretical evidence for cooperative and electronic delocalization effects in N–H···O hydrogen bonding. Chem Phys 348:175–180

    Article  CAS  Google Scholar 

  3. Esrafili MD, Behzadi H, Hadipour NL (2008) Density functional theory study of N–H⋯ O, O–H⋯ O and C–H⋯ O hydrogen-bonding effects on the 14 N and 2 H nuclear quadrupole coupling tensors of N-acetyl-valine. Biophys Chem 133:11–18

    Article  CAS  Google Scholar 

  4. Berka K, Laskowski R, Riley KE, Hobza P, Vondrášek J (2009) Representative amino acid side chain interactions in proteins. A comparison of highly accurate correlated ab initio quantum chemical and empirical potential procedures. J Chem Theory Comput 5:982–992

    Article  CAS  Google Scholar 

  5. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  6. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  7. Kim KS, Tarakeshwar P, Lee JY (2000) Molecular clusters of π-systems: theoretical studies of structures, spectra, and origin of interaction energies. Chem Rev 100:4145–4186

    Article  CAS  Google Scholar 

  8. Wang BQ, Li ZR, Wu D, Hao XY, Li RJ, Sun CC (2003) Single-electron hydrogen bonds in the methyl radical complexes H3C⋯HF and H3C⋯HCCH: an ab initio study. Chem Phys Lett 375:91–95

    Article  CAS  Google Scholar 

  9. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  10. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  11. Esrafili MD, Solimannejad M (2013) Revealing substitution effects on the strength and nature of halogen-hydride interactions: a theoretical study. J Mol Model 19:3767–3777

    Article  CAS  Google Scholar 

  12. Esrafili MD (2013) A theoretical investigation of the characteristics of hydrogen/halogen bonding interactions in dibromo-nitroaniline. J Mol Model 19:1417–1427

    Article  CAS  Google Scholar 

  13. Esrafili MD, Esmailpour P, Mohammadian F, Solimannejad M (2013) Theoretical study of the interplay between halogen bond and lithium–π interactions: cooperative and diminutive effects. Chem Phys Lett 588:47–50

    Article  CAS  Google Scholar 

  14. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  15. Murray JS, Lane P, Clark T, Politzer P (2007) σ‐Hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  16. Murray JS, Lane P, Politzer P (2008) Simultaneous σ-hole and hydrogen bonding by sulfur- and selenium-containing heterocycles. Int J Quantum Chem 108:2770–2781

    Article  CAS  Google Scholar 

  17. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) Br···O complexes as probes of factors affecting halogen bonding: interactions of bromobenzenes and bromopyrimidines with acetone. J Chem Theory Comput 5:155–163

    Article  CAS  Google Scholar 

  18. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  19. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  20. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: lex parsimoniae (Occam’s Razor). Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  21. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14:278–294

    Article  CAS  Google Scholar 

  22. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2013) Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 19:4651–4659

    Article  CAS  Google Scholar 

  23. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  24. Politzer P, Murray JS, Janjić GV, Zarić SD (2013) σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystal 4:12–31

    Article  Google Scholar 

  25. Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) Theoretical investigations on chalcogen-chalcogen interactions: what makes these nonbonded interactions bonding? J Am Chem Soc 128:2666–2674

    Article  CAS  Google Scholar 

  26. Wang W, Ji B, Zhang Y (2009) Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A 113:8132–8135

    Article  Google Scholar 

  27. Politzer P, Murray JS, Clark T (2014) σ-Hole bonding: a physical interpretation. Top Curr Chem. doi:10.1007/128_2014_568

    Google Scholar 

  28. Politzer P, Murray JS (2009) In: Leszczynski J, Shukla M (eds) Practical aspects of computational chemistry. Springer, Heidelberg, p 149

    Chapter  Google Scholar 

  29. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  30. Iwaoka M, Takemoto S, Tomoda S (2002) Statistical and theoretical investigations on the directionality of nonbonded S···O interactions. Implications for molecular design and protein engineering. J Am Chem Soc 124:10613–10620

    Article  CAS  Google Scholar 

  31. Saczewski J, Frontera A, Gdaniec M, Brzozowski Z, Saczewski F, Tabin P, Quiñonero D, Deyà PM (2006) Synthesis, X-ray structure analysis and computational studies of novel bis(thiocarbamoyl) disulfides with non-covalent S⋯N and S⋯S interactions. Chem Phys Lett 422:234–239

    Article  CAS  Google Scholar 

  32. Zhang Y, Wang W (2009) The bifurcate chalcogen bond: some theoretical observations. J Mol Struct THEOCHEM 916:135–138

    Article  CAS  Google Scholar 

  33. Esrafili MD, Vakili M (2014) Cooperativity effects between σ-hole interactions: a theoretical evidence for mutual influence between chalcogen bond and halogen bond interactions in F2S∙∙∙NCX∙∙∙NCY complexes (X = F, Cl, Br, I; Y = H, F, OH). Mol Phys 112:2746–2752

    Article  CAS  Google Scholar 

  34. Esrafili MD, Vakili M (2014) Halogen bonds enhanced by σ-hole and π-hole interactions: a comparative study on cooperativity and competition effects between X∙∙∙N and S∙∙∙N interactions in H3N∙∙∙XCN∙∙∙SF2 and H3N∙∙∙XCN∙∙∙SO2 complexes (X = F, Cl, Br and I). J Mol Model 20:2291

    Article  Google Scholar 

  35. Li QZ, Li R, Guo P, Li H, Li WZ, Cheng JB (2012) Competition of chalcogen bond, halogen bond, and hydrogen bond in SCS–HOX and SeCSe–HOX (X = Cl and Br) complexes. Comput Theor Chem 980:56–61

    Article  CAS  Google Scholar 

  36. Bauzá A, Quiñonero D, Deyà PM, Frontera A (2013) Halogen bonding versus chalcogen and pnicogen bonding: a combined Cambridge structural database and theoretical study. CrystEngComm 15:3137–31440

    Article  Google Scholar 

  37. Brezgunova ME, Lieffrig J, Aubert E, Dahaoui S, Fertey P, Lebègue S, Ángyán JG, Fourmigué M, Espinosa E (2013) Chalcogen bonding: experimental and theoretical determinations from electron density analysis. Geometrical preferences driven by electrophilic — nucleophilic interactions. Cryst Growth Des 13:3283–3289

    Article  CAS  Google Scholar 

  38. Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113:1609–1620

    Article  CAS  Google Scholar 

  39. Li Q, Hui Q, Li R, Liu X, Li W, Cheng J (2012) Prediction and characterization of a chalcogen–hydride interaction with metal hybrids as an electron donor in F2CS–HM and F2CSe–HM (M = Li, Na, BeH, MgH, MgCH3) complexes. Phys Chem Chem Phys 14:3025–3030

    Article  CAS  Google Scholar 

  40. Wang Y, Zou J, Lu Y, Yu Q, Xu H (2007) Single-electron halogen bond: ab initio study. Int J Quantum Chem 107:501–506

    Article  CAS  Google Scholar 

  41. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  42. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  43. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102

    Article  Google Scholar 

  44. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  45. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM 2000. J Comput Chem 22:545–559

    Article  Google Scholar 

  46. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  47. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  48. Hix S, Kadiis MB, Mason RP, Augusto O (2000) In vivo metabolism of tert-butyl hydroperoxide to methyl radicals. EPR spin-trapping and DNA methylation studies. Chem Res Toxicol 13:1056–1064

    Article  CAS  Google Scholar 

  49. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  50. Hobza P, Zahradnik R, Muller-Dethlefs K (2006) The world of non-covalent interactions. Collect Czechoslov Chem Commun 71:443–531

    Article  CAS  Google Scholar 

  51. Clark T, Politzer P, Murray JS (2015) Correct electrostatic treatment of noncovalent interactions: the importance of polarization. Wires Comput Mol Sci. doi:10.1002/wcms.1210

    Google Scholar 

  52. Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2013) Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 19:4651–4659

    Article  CAS  Google Scholar 

  53. Koch U, Popelier PLA (1995) Characterization of C-H···O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  54. Esrafili MD, Mohammadian F (2015) Ab initio calculations of cooperativity effects on chalcogen bonding: linear clusters of (OCS)2–8 and (OCSe) 2–8. Struct Chem 26:199–206

    Article  CAS  Google Scholar 

  55. Esrafili MD, Mahdavinia G, Javaheri M, Sobhi HR (2014) A theoretical study of substitution effects on halogen–π interactions. Mol Phys 112:1160–1166

    Article  CAS  Google Scholar 

  56. Clark T, Murray JS, Politzer P (2013) Role of polarization in halogen bonds. Aust J Chem 67:451–456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Indicates the optimized structure of XHY···CH3 and XHY···CH2CH3 complexes (X=F, Cl, Br; Y=S, Se). (DOC 2220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esrafili, M.D., Mohammadian-Sabet, F. Does single-electron chalcogen bond exist? Some theoretical insights. J Mol Model 21, 65 (2015). https://doi.org/10.1007/s00894-015-2613-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2613-5

Keywords

Navigation