Skip to main content
Log in

A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a review of general processes related to plasma sources, their transport, energization, and losses in the planetary magnetospheres. We provide background information as well as the most up-to-date knowledge of the comparative studies of planetary magnetospheres, with a focus on the plasma supply to each region of the magnetospheres. This review also includes the basic equations and modeling methods commonly used to simulate the plasma sources of the planetary magnetospheres. In this paper, we will describe basic and common processes related to plasma supply to each region of the planetary magnetospheres in our solar system. First, we will describe source processes in Sect. 1. Then the transport and energization processes to supply those source plasmas to various regions of the magnetosphere are described in Sect. 2. Loss processes are also important to understand the plasma population in the magnetosphere and Sect. 3 is dedicated to the explanation of the loss processes. In Sect. 4, we also briefly summarize the basic equations and modeling methods with a focus on plasma supply processes for planetary magnetospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • T. Abe et al., Observations of polar wind and thermal ion outflow by Akebono/SMS. J. Geomagn. Geoelectr. 48, 319 (1996)

    Article  Google Scholar 

  • H. Andersen, H.L. Bay, in Sputtering by Particle Bombardment I, ed. by R. Behrisch (Springer, Berlin, 1981), Chap. 4

    Google Scholar 

  • M. Andre, A.L. Yau, Theories and observations of ion energization and outflow in the high latitude magnetosphere. Space Sci. Rev. 80, 27 (1997)

    Article  ADS  Google Scholar 

  • V.G. Anicich, Evaluated bimolecular ion-molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds. J. Phys. Chem. Ref. Data 22, 1469–1569 (1993)

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla et al., The formation of the wall region—Consequences in the near-Earth magnetotail. Geophys. Res. Lett. 19, 1739 (1992)

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla et al., Consequences of magnetotail ion dynamics. J. Geophys. Res. 99, 14891 (1994)

    Article  ADS  Google Scholar 

  • W.I. Axford, Viscous interaction between the solar wind and the Earth’s magnetosphere. Planet. Space Sci. 12, 45 (1964)

    Article  ADS  Google Scholar 

  • W.I. Axford, C.O. Hines, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 39, 1433 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  • S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 94 (2007)

    Article  Google Scholar 

  • F. Bagenal, The magnetosphere of Jupiter: Coupling the equator to the poles. J. Atmos. Sol.-Terr. Phys. 69, 387 (2007). doi:10.1016/j.jastp.2006.08.012

    Article  ADS  Google Scholar 

  • F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, A05209 (2011). doi:10.1029/2010JA016294

    ADS  Google Scholar 

  • F. Bagenal, J.D. Sullivan, Direct plasma measurements in the Io torus and inner magnetosphere of Jupiter. J. Geophys. Res. 86, 8447 (1981)

    Article  ADS  Google Scholar 

  • J. Bailey, M. Gruntman, Experimental study of exospheric hydrogen atom distributions by Lyman-alpha detectors on the TWINS mission. J. Geophys. Res. (Space Phys.) 116(A15), 302 (2011). doi:10.1029/2011JA016531

    Google Scholar 

  • P.M. Banks, T.E. Holzer, High-latitude plasma transport: The polar wind. J. Geophys. Res. 74, 6317 (1969). doi:10.1029/JA074i026p06317

    Article  ADS  Google Scholar 

  • R.A. Baragiola et al., Nucl. Instrum. Methods Phys. Res. B 209, 294 (2003)

    Article  ADS  Google Scholar 

  • L.F. Bargatze, D.N. Baker, R.L. McPherron, E.W. Hones, Magnetospheric impulse response for many levels of geomagnetic activity. J. Geophys. Res. 90, 6387 (1985). doi:10.1029/JA090iA07p06387

    Article  ADS  Google Scholar 

  • R. Behrisch, W. Eckstein, Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies (Springer, Berlin, 2007)

    Google Scholar 

  • A. Bhardwaj, G.R. Gladstone, Auroral emissions of the giant planets. Rev. Geophys. 38, 295 (2000)

    Article  ADS  Google Scholar 

  • J.P. Biersack, W. Eckstein, Sputtering of solids with the Monte Carlo program TRIM.SP. Appl. Phys. A 34, 73 (1984)

    Article  ADS  Google Scholar 

  • G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994)

    Google Scholar 

  • K. Birkeland, Sur la déviabilité magnétique des rayons corpusculaires provenant du Soleil. C. R. Acad. Sci. 150, 246 (1910)

    Google Scholar 

  • J. Bishop, Multiple charge exchange and ionization collisions within the ring current-geocorona-plasmasphere system: generation of a secondary ring current on inner L shells. J. Geophys. Res. 101, 17,325 (1996). doi:10.1029/95JA03468

    Article  ADS  Google Scholar 

  • M. Blanc et al., Space Sci. Rev. (2015, this issue)

  • S.J. Bolton et al., Space Sci. Rev. (2015, this issue)

  • S.J. Bolton, Jupiter’s inner radiation belts, in Jupiter: The Planet, Satellites, and Magnetosphere, ed. by F. Bagenal et al. (Cambridge Univ. Press, Cambridge, 2004), p. 671, Chap. 27

    Google Scholar 

  • S.J. Bolton, R.M. Thorne, S. Bourdarie, I. de Pater, B. Mauk, Jupiter’s inner radiation belts, in Jupiter: The Planet, Satellites, and Magnetosphere, ed. by F. Bagenal et al.(Cambridge Univ. Press, Cambridge, 2004), p. 671. Chapter 27

    Google Scholar 

  • B. Bonfond, When Moons create Aurora: the satellite footprints on giant planets, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. AGU Geophysical Monograph Series, vol. 197 (2012), p. 133

    Chapter  Google Scholar 

  • J.W. Boring et al., Sputtering of solid SO2. Nucl. Instrum. Methods B 1, 321 (1984)

    Article  ADS  Google Scholar 

  • J.E. Borovsky, M.F. Thomnsen, R.C. Elphic, The driving of the plasma sheet by the solar wind. J. Geophys. Res. 103(A8), 17,617 (1998). doi:10.1029/97JA02986

    Article  ADS  Google Scholar 

  • J.E. Borovsky et al., What determines the reconnection rate at the dayside magnetosphere? J. Geophys. Res. 113, A07210 (2008). doi:10.1029/2007JA012645

    ADS  Google Scholar 

  • O.J. Brambles et al., Effects of causally driven cusp \(\mathrm{O}^{+}\) outflow on the storm time magnetosphere-ionosphere system using a multifluid global simulation. J. Geophys. Res. 115, A00J04 (2010). doi:10.1029/2010JA015469

    ADS  Google Scholar 

  • S.H. Brecht, V.A. Thomas, Multidimensional simulations using hybrid particle codes. Comput. Phys. Commun. 48, 135–143 (1988)

    Article  ADS  Google Scholar 

  • N.M. Brice, G.A. Ioannidis, The magnetospheres of Jupiter and Earth. Icarus 13, 173 (1970)

    Article  ADS  Google Scholar 

  • W.L. Brown, R.E. Johnson, Sputtering of ices: a review. Nucl. Instrum. Methods B 13, 295 (1986)

    Article  ADS  Google Scholar 

  • W.L. Brown, W.M. Augustyniak, K.J. Marcantonio, E.N. Simmons, J.W. Boring, R.E. Johnson, C.T. Reimann, Electronic sputtering of low temperature molecular solids. Nucl. Instrum. Methods Phys. Res. B 1, 307 (1984)

    Article  ADS  Google Scholar 

  • D.G. Brown, J.L. Horwitz, G.R. Wilson, Synergistic effects of hot plasma-driven potentials and wave-driven ion heating on auroral ionospheric plasma transport. J. Geophys. Res. 100, 17,499 (1995)

    Article  ADS  Google Scholar 

  • M. Bruno, G. Cremonese, S. Marchi, Neutral sodium atoms release from the surfaces of the Moon and Mercury induced by meteoroid impacts. Planet. Space Sci. 55, 1494 (2007)

    Article  ADS  Google Scholar 

  • J. Büchner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. J. Geophys. Res. 94, 11,821 (1989)

    Article  ADS  Google Scholar 

  • J.L. Burch et al., Properties of local plasma injections in Saturn’s magnetosphere. Geophys. Res. Lett. 32, L14S02 (2005). doi:10.1029/2005GRL022611

    Article  ADS  Google Scholar 

  • L.F. Burlaga, Magnetic fields and plasmas in the inner heliosphere: Helios results. Planet. Space Sci. 49, 1619 (2001)

    Article  ADS  Google Scholar 

  • R.K. Burton, R.L. McPherron, C.T. Russell, Terrestrial magnetosphere—half-wave rectifier of interplanetary electric-field. Science 189(4204), 717 (1975a)

    Article  ADS  Google Scholar 

  • R.K. Burton, R.L. McPherron, C.T. Russell, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204 (1975b)

    Article  ADS  Google Scholar 

  • M.N. Caan, R.L. McPherron, C.T. Russell, Solar wind and substorm-related changes in the lobes of the geomagnetic tail. J. Geophys. Res. 78, 8087 (1973)

    Article  ADS  Google Scholar 

  • C.W. Carlson, R.F. Pfaff, J.G. Watzin, Fast Auroral Snapshot (FAST) mission. Geophys. Res. Lett. 25, 2013 (1998)

    Article  ADS  Google Scholar 

  • T.A. Cassidy, R.E. Johnson, Monte Carlo model of sputtering and other ejection processes within a regolith. Icarus 176, 499 (2005)

    Article  ADS  Google Scholar 

  • T.A. Cassidy et al., The spatial morphology of Europa’s near-surface O2 atmosphere. Icarus 191, 755 (2007)

    Article  ADS  Google Scholar 

  • T.A. Cassidy et al., Radiolysis and photolysis of icy satellite surfaces: experiments and theory. Space Sci. Rev. 153(1–4), 299 (2010)

    Article  ADS  Google Scholar 

  • T.A. Cassidy et al., Magnetospheric ion sputtering and water ice grain size at Europa. Planet. Space Sci. 77, 64 (2013)

    Article  ADS  Google Scholar 

  • B.L. Cecconi et al., Goniopolarimetric study of the Rev 29 perikrone using the Cassini/RPWS/HFR radio receiver. J. Geophys. Res. 114, A03215 (2009)

    ADS  Google Scholar 

  • J.W. Chamberlain, Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11, 901 (1963). doi:10.1016/0032-0633(63)90122-3

    Article  ADS  Google Scholar 

  • E. Chané, J. Saur, S. Poedts, Modeling Jupiter’s magnetosphere: Influence of the internal sources. J. Geophys. Res. 118, 2157 (2013). doi:10.1002/jgra.50258

    Article  Google Scholar 

  • C.R. Chappell, The role of the ionosphere in providing plasma to the terrestrial magnetosphere—an historical overview. Space Sci. Rev. (2015, in press)

  • F.F. Chen, Introduction to Plasma Physics and Controlled Fusion. Boom Koninklijke Uitgevers (1984)

  • J. Chen, P.J. Palmadesso, Chaos and nonlinear dynamics of single-particle orbits in magnetotaillike magnetic field. J. Geophys. Res. 91, 1499 (1986)

    Article  ADS  Google Scholar 

  • Y.T. Chiu, M. Schulz, Slf-consistent particle and parallel electrostatic electric field distributions in the magnetospheric-ionospheric auroral region. J. Geophys. Res. 83, 629 (1978)

    Article  ADS  Google Scholar 

  • M.J. Cintala, Impact induced thermal effects in the lunar and Mercurian regoliths. J. Geophys. Res. 97, 947 (1992)

    Article  ADS  Google Scholar 

  • J.B. Cladis, Parallel acceleration and transport of ions from polar ionosphere to plasma sheet. Geophys. Res. Lett. 13, 893 (1986)

    Article  ADS  Google Scholar 

  • J.T. Clarke, Auroral processes on Jupiter and Saturn, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. AGU Geophysical Monograph Series, vol. 197 (2012), p. 113

    Chapter  Google Scholar 

  • J.E.P. Connerney, J.H. Waite, New model of Saturn’s ionosphere with an influx of water. Nature 312, 136 (1984)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney et al., Images of excited \(\mathrm{H}_{3}^{+}\) at the foot of the Io flux tube in Jupiter’s atmosphere. Science 262, 1035–1038 (1993)

    Article  ADS  Google Scholar 

  • J.F. Cooper et al., Energetic ion and electron irradiation of the icy Galilean satellites. Icarus 149, 133 (2001)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, The causes of convection in the Earth’s magnetosphere: A review of developments during the IMS. Rev. Geophys. 20(3), 531–565 (1982). doi:10.1029/RG020i003p00531

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, R. Prangé, Saturn’s polar ionospheric flows and their relation to the main auroral oval. Ann. Geophys. 22, 1379 (2004)

    Article  ADS  Google Scholar 

  • T.E. Cravens, Physics of Solar System Plasmas (Camb. Univ. Press, Cambridge, 1997). doi:10.1017/CBO9780511529467

    Book  Google Scholar 

  • J. De Keyser, R. Maggiolo, M. Echim, Monopolar and bipolar auroral electric fields and their effects. Ann. Geophys. 28, 2027 (2010)

    Article  ADS  Google Scholar 

  • A.E. De Vries et al., Synthesis and sputtering of newly formed molecules by kiloelectronvolt ions. J. Phys. Chem. 88, 4510 (1984)

    Article  ADS  Google Scholar 

  • P.A. Delamere, F. Bagenal, Solar wind interaction with Jupiter ’s magnetosphere. J. Geophys. Res. 115, A10201 (2010). doi:10.1029/2010JA015347

    Article  ADS  Google Scholar 

  • P.A. Delamere et al., Magnetic signatures of Kelvin-Helmholtz vortices on Saturn’s magnetopause: Global survey. J. Geophys. Res. 118, 393 (2013)

    Article  Google Scholar 

  • D.C. Delcourt, Particle acceleration by inductive electric fields in the inner magnetosphere. J. Atmos. Sol.-Terr. Phys. 64, 551 (2002)

    Article  ADS  Google Scholar 

  • D.C. Delcourt, J.-A. Sauvaud, Populating of the cusp and boundary layers by energetic (hundreds of keV) equatorial particles. J. Geophys. Res. 104, 22,635 (1999)

    Article  ADS  Google Scholar 

  • D.C. Delcourt, J.-A. Sauvaud, A. Pedersen, Dynamics of single-particle orbits during substorm expansion phase. J. Geophys. Res. 95, 20,853 (1990)

    Article  ADS  Google Scholar 

  • D.C. Delcourt, R.F. Martin Jr., F. Alem, A simple model of magnetic moment scattering in a field reversal. Geophys. Res. Lett. 21, 1543 (1994)

    Article  ADS  Google Scholar 

  • D.C. Delcourt et al., On the nonadiabatic precipitation of ions from the near-Earth plasma sheet. J. Geophys. Res. 101, 17,409 (1996)

    Article  ADS  Google Scholar 

  • J. Dessler, E.N. Parker, Hydromagnetic theory of geomagnetic storms. J. Geophys. Res. 64, 2239 (1959). doi:10.1029/JZ064i012p02239

    Article  ADS  Google Scholar 

  • G.A. DiBraccio, J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, D.N. Baker, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. 118, 997 (2013). doi:10.1002/jgra.50123

    Article  Google Scholar 

  • J.W. Dungey, Interplanetaly magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961)

    Article  ADS  Google Scholar 

  • W. Eckstein, H.M. Urbassek, Computer simulation of the sputtering process, in Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies, ed. by R. Behrisch, W. Eckstein (Springer, Berlin, 2007), p. 21

    Chapter  Google Scholar 

  • G. Eichhorn, Heating and vaporization during hypervelocity particle impact. Planet. Space Sci. 26, 463 (1978a)

    Article  ADS  Google Scholar 

  • G. Eichhorn, Primary Velocity Dependence of impact ejecta parameters. Planet. Space Sci. 26, 469 (1978b)

    Article  ADS  Google Scholar 

  • R.E. Ergun et al., S bursts and the Jupiter ionospheric Alfvén resonator. J. Geophys. Res. 111, A06212 (2006)

    ADS  Google Scholar 

  • D.S. Evans, Precipitation electron fluxes formed by magnetic-field-aligned potential differences. J. Geophys. Res. 79, 2853 (1974)

    Article  ADS  Google Scholar 

  • H.J. Fahr, The extraterrestrial UV-background and the nearby interstellar medium. Space Sci. Rev. 15, 483 (1974). doi:10.1007/BF00178217

    Article  ADS  Google Scholar 

  • M. Famà, J. Shi, R.A. Baragiola, Sputtering of ice by low-energy ions. Surf. Sci. 602, 156 (2008)

    Article  ADS  Google Scholar 

  • C.J. Farrugia, N.V. Erkaev, H.K. Biernat et al., Anomalous magnetosheath properties during Earth passage of an interplanetary magnetic cloud. J. Geophys. Res. 100, 19245 (1995)

    Article  ADS  Google Scholar 

  • Y.I. Feldstein et al., Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents. Ann. Geophys. 19, 495 (2001)

    Article  ADS  Google Scholar 

  • W.L. Fite, T.R. Brackman, W.R. Snow, Charge transfer in proton-hydrogen atom collisions. Phys. Rev. 112, 1161 (1958)

    Article  ADS  Google Scholar 

  • M.-C. Fok et al., J. Geophys. Res. 111 (2006). doi:10.1029/2006JA011839

  • D. Fontaine et al., Numerical simulation of the magnetospheric convection including the effect of electron precipitation. J. Geophys. Res. 90, 8343 (1985)

    Article  ADS  Google Scholar 

  • R.J. Forsyth et al., The underlying Parker spiral structure in the Ulysses magnetic field observations, 1990–1994. J. Geophys. Res. 101, 395 (1996)

    Article  ADS  Google Scholar 

  • J.L. Fox, K.Y. Sung, Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res. 106, 21305 (2001)

    Article  ADS  Google Scholar 

  • L.A. Frank, On the extraterrestrial ring current during geomagnetic storm. J. Geophys. Res. 72, 3753 (1967)

    Article  ADS  Google Scholar 

  • K.M. Frederick-Frost et al., SERSIO: Svalbard EISCAT rocket study of ion outflows. J. Geophys. Res. 112, A08307 (2007). doi:10.1029/2006JA011942

    ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Magnetospheric convection at Saturn as a function of IMF Bz. Geophys. Res. Lett. 34(1) (2007a). doi:10.1029/2006GL028373

  • K. Fukazawa, T. Ogino, R.J. Walker, Vortex-associated reconnection for northward IMF in the Kronian magnetosphere. Geophys. Res. Lett. 34 (2007b). doi:10.1029/2007GL031784

  • S.A. Fuselier, W.S. Lewis, Properties of near-earth magnetic reconnection from in-situ observations. Space Sci. Rev. 160(1–4), 95 (2011)

    Article  ADS  Google Scholar 

  • S.A. Fuselier et al., Energetic neutral atoms from the Earth’s subsolar magnetopause. Geophys. Res. Lett. 371, 101 (2010). doi:10.1029/2010GL044140

    Google Scholar 

  • P. Galopeau, P. Zarka, D. Le Quéau, Source location of SKR: the Kelvin-Helmholtz instability hypothesis. J. Geophys. Res. 100, 26397 (1995)

    Article  ADS  Google Scholar 

  • S.B. Ganguli, The polar wind. Rev. Geophys. 34, 311 (1996)

    Article  ADS  Google Scholar 

  • K.S. Garcia, V.G. Merkin, W.J. Hughes, Effects of nightside \(\mathrm{O}^{+}\) outflow on magnetospheric dynamics: Results of multifluid MHD modeling. J. Geophys. Res. 115, A00J09 (2010). doi:10.1029/2010JA015730

    ADS  Google Scholar 

  • D.J. Gershman, J.A. Slavin, J.M. Raines et al., Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. J. Geophys. Res. 118, 7181 (2013)

    Article  Google Scholar 

  • A. Glocer, G. Tóth, T. Gombosi, D. Welling, Modeling ionospheric outflows and their impact on the magnetosphere, initial results. J. Geophys. Res. 114(A), 05,216 (2009). doi:10.1029/2009JA014053

    Article  Google Scholar 

  • T.I. Gombosi, Physics of the Space Environment (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  • J.T. Gosling et al., The electron edge of the low latitude boundary layer during accelerated flow events. Geophys. Res. Lett. 17(11), 1833 (1990a)

    Article  ADS  Google Scholar 

  • J.T. Gosling, R.M. Skoug, D.J. McComas et al., Magnetic disconnection from the Sun: observations of a reconnection exhaust in the solar wind at the heliospheric current sheet. Geophys. Res. Lett. 32, L05105 (2005). doi:10.1029/2005GL022406

    Article  ADS  Google Scholar 

  • A. Grocott, S.W.H. Cowley, J.B. Sigwarth, Ionospheric flow during extended intervals of northward but BY-dominated IMF. Ann. Geophys. 21, 509 (2003)

    Article  ADS  Google Scholar 

  • A. Grocott et al., Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114, A07219 (2009). doi:10.1029/2009JA014330

    ADS  Google Scholar 

  • K.C. Hansen et al., Global MHD simulations of Saturn’s magnetosphere at the time of Cassini approach. Geophys. Res. Lett. 32, L20S06 (2005). doi:10.1029/2005GL022835

    Article  Google Scholar 

  • M. Harel et al., Quantitative simulations of a magnetospheric substorm, 1. Model logic and overview. J. Geophys. Res. 86, 2217–2241 (1981)

    Article  ADS  Google Scholar 

  • R.A. Haring et al., Reactive sputtering of simple condensed gases by keV ions. III. Kinetic energy distributions. Nucl. Instrum. Methods B 5, 483 (1984)

    Article  ADS  Google Scholar 

  • E.G. Harris, On a plasma sheath separating regions of oppositely directed magnetic fields. Nuovo Cimento 23, 115 (1962)

    Article  MATH  Google Scholar 

  • H. Hasegawa et al., Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 430(7001), 755 (2004). doi:10.1038/nature02799

    Article  ADS  Google Scholar 

  • H. Hasegawa et al., Kelvin-Helmholtz waves at the Earth’s magnetopause: Multiscale development and associated reconnection. J. Geophys. Res. 114, A12207 (2009)

    Article  ADS  Google Scholar 

  • W.J. Heikkila, R.J. Pellinen, Localized induced electric field within the magnetotail. J. Geophys. Res. 82, 1610 (1977)

    Article  ADS  Google Scholar 

  • S. Hess, P. Zarka, F. Mottez, Io-Jupiter interaction, millisecond bursts and field aligned potentials. Planet. Space Sci. 55, 89 (2007)

    Article  ADS  Google Scholar 

  • S. Hess et al., Electric potential jumps in the Io-Jupiter Flux tube. Planet. Space Sci. 57, 23 (2009)

    Article  ADS  Google Scholar 

  • T.W. Hill, F.C. Michel, Heavy ions from the Galilean satellites and the centrifugal distortion of the Jovian magnetosphere. J. Geophys. Res. 81, 4561 (1976)

    Article  ADS  Google Scholar 

  • T.W. Hill, A.J. Dessler, F.C. Michel, Configuration of the Jovian magnetosphere. Geophys. Res. Lett. 1 (1974). doi:10.1029/GL001i001p00003

  • T.W. Hill et al., Evidence for rotationally-driven plasma transport in Saturn’s magnetosphere. Geophys. Res. Lett. 32, L41S10 (2005)

    Article  Google Scholar 

  • R.R. Hodges Jr., Monte Carlo simulation of the terrestrial hydrogen exosphere. J. Geophys. Res. 99, 23,229 (1994). doi:10.1029/94JA02183

    Article  ADS  Google Scholar 

  • W.O. Hofer, Angular, energy, and mass distribution of sputtered particles, in Sputtering by Particle Bombardment, ed. by R. Behrisch, K. Wittmaack (Springer, Berlin, 1991), p. 15

    Chapter  Google Scholar 

  • E.W. Hones Jr., The magnetotail: its generation and dissipation, in Physics of Solar Planetary Environments, ed. by D.J. Williams (AGU, Washington, 1976), pp. 559–571

    Google Scholar 

  • E.W. Hones Jr., Substorm processes in the magnetotail: comments on “On hot tenuous plasma, fireballs, and boundary layers in the Earth’s magnetotail” by L.A. Frank et al. J. Geophys. Res. 82, 5633 (1977)

    Article  ADS  Google Scholar 

  • T.S. Huang, T.J. Birmingham, The polarization electric field and its effects in an anisotropic, rotating magnetospheric plasma. J. Geophys. Res. 97, 1511 (1992)

    Article  ADS  Google Scholar 

  • J.D. Huba, Numerical Methods: Ideal and Hall MHD 7, 26 (2005)

    Google Scholar 

  • R.L. Huff et al., Mapping of auroral kilometric radiation sources to the Aurora. J. Geophys. Res. 93, 11445 (1988)

    Article  ADS  Google Scholar 

  • A. Ieda et al., Statistical analysis of the plasmoid evolution with Geotail observations. J. Geophys. Res. 103(A3), 4453 (1998). doi:10.1029/97JA03240

    Article  ADS  Google Scholar 

  • R. Ilie, R.M. Skoug, H.O. Funsten, M.W. Liemohn, J.J. Bailey, M. Gruntman, The impact of geocoronal density on ring current development. J. Atmos. Sol.-Terr. Phys. 99, 92 (2013). doi:10.1016/j.jastp.2012.03.010

    Article  ADS  Google Scholar 

  • S.M. Imber et al., MESSENGER observations of large dayside flux transfer events: do they drive Mercury’s substorm cycle? J. Geophys. Res. (2014, submitted)

  • F.M. Ipavich et al., Energetic (greater than 100 keV) \(\mathrm{O}^{(+)}\) ions in the plasma sheet. Geophys. Res. Lett. 11, 504 (1984)

    Article  ADS  Google Scholar 

  • C.M. Jackman et al., Interplanetary magnetic field at ∼9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics. J. Geophys. Res. 109, A11203 (2004). doi:10.1029/2004JA010614

    Article  ADS  Google Scholar 

  • C.M. Jackman et al., Strong rapid dipolarizations in Saturn’s magnetotail: In situ evidence of reconnection. Geophys. Res. Lett. 34(11), L11203 (2007)

    Article  ADS  Google Scholar 

  • C.M. Jackman, R.J. Forsyth, M.K. Dougherty, The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations. J. Geophys. Res. 113, A08114 (2008). doi:10.1029/2008JA013083

    ADS  Google Scholar 

  • C.M. Jackman, J.A. Slavin, S.W.H. Cowley, Cassini observations of plasmoid structure and dynamics: Implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. J. Geophys. Res. 116, A10212 (2011). doi:10.1029/2011JA016682

    Article  ADS  Google Scholar 

  • C.M. Jackman et al., Large-scale structure and dynamics of the magnetotails of Mercury, Earth, Jupiter and Saturn. Space Sci. Rev. 182(1), 85–154. (2014a). doi:10.1007/s11214-014-0060-8

    Article  ADS  Google Scholar 

  • C.M. Jackman et al., Saturn’s dynamic magnetotail: A comprehensive magnetic field and plasma survey of plasmoids and travelling compression regions, and their role in global magnetospheric dynamics. J. Geophys. Res. 119, 5465–5494 (2014b). doi:10.1002/2013JA019388

    Article  Google Scholar 

  • X. Jia, M.G. Kivelson, Driving Saturn’s magnetospheric periodicities from the atmosphere/ionosphere: Magnetotail response to dual sources. J. Geophys. Res. 117, A11219 (2012). doi:10.1029/2012JA018183

    Article  ADS  Google Scholar 

  • X.Z. Jia et al., Properties of Ganymede’s magnetosphere inferred from improved three-dimensional MHD simulations. J. Geophys. Res. 114, A09209 (2009). doi:10.1029/2009JA014375

    ADS  Google Scholar 

  • X. Jia et al., Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation. J. Geophys. Res. 117, A05225 (2012b). doi:10.1029/2012JA017575

    ADS  Google Scholar 

  • X. Jia, M.G. Kivelson, T.I. Gombosi, Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere. J. Geophys. Res. 117, A04215 (2012a). doi:10.1029/2011JA017367

    ADS  Google Scholar 

  • R.E. Johnson, Energetic Charged-Particle Interactions with Atmospheres and Surfaces, vol. X. Phys. Chem. Space (Springer, Berlin, Heidelberg, New York, 1990), p. 19

    Book  Google Scholar 

  • R.E. Johnson, Sputtering and desorption from icy surfaces, in Solar System Ices, ed. by B. Schmitt, C. de Bergh (Kluwer Acad., Dordrecht, 1998), p. 303

    Chapter  Google Scholar 

  • R.E. Johnson, Surface chemistry in the Jovian magnetosphere radiation environment, in Chemical Dynamics in Extreme Environments, ed. by R. Dessler. Adv. Ser. Phys. Chem., vol. 11 (World Scientific, Singapore, 2001), p. 390, Chap. 8

    Chapter  Google Scholar 

  • R.E. Johnson et al., Charged particle erosion of frozen volatiles in ice grains and comets. Astron. Astrophys. 123, 343 (1983)

    ADS  Google Scholar 

  • R.E. Johnson, F. Leblanc, B.V. Yakshinskiy, T.E. Madey, Energy distributions for desorption of sodium and potassium from ice: the Na/K ratio at Europa. Icarus 156, 136 (2002)

    Article  ADS  Google Scholar 

  • R.E. Johnson, M.H. Burger, T.A. Cassidy, F. Leblanc, M. Marconi, W.H. Smyth, Composition and detection of Europa’s sputter-induced atmosphere, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K. Khurana (The University of Arizona Press, Tucson, 2009), p. 507

    Google Scholar 

  • M. Jorgensen, M.G. Henderson, E.C. Roelof, G.D. Reeves, H.E. Spence, Charge exchange contribution to the decay of the ring current, measured by energetic neutral atoms (ENAs). J. Geophys. Res. 106, 1931 (2001). doi:10.1029/2000JA000124

    Article  ADS  Google Scholar 

  • K. Kabin et al., Interaction of Mercury with the solar wind. Icarus 143(2), 397 (2000)

    Article  ADS  Google Scholar 

  • K. Keika, M. Nose, K. Takahashi, S. Ohtani, P.C. Brandt, D.G. Mitchell, S.P. Christon, R.W. McEntire, Contribution of ion flowout and charge exchange processes to the decay of the storm-time ring current. AGU Fall Meeting Abstracts, p. A565 (2003)

  • K. Keika, M. Nose, P.C. Brandt, S. Ohtani, D.G. Mitchell, E.C. Roelof, Contribution of charge exchange loss to the storm time ring current decay: IMAGE/HENA observations. J. Geophys. Res. 111, 11 (2006). doi:10.1029/2006JA011789

    Google Scholar 

  • A. Keiling et al., Transient ion beamlet injections into spatially separated PSBL flux tubes observed by Cluster-CIS. Geophys. Res. Lett. 31 (2004)

  • K.K. Khurana et al., The origin of Ganymede’s polar caps. Icarus 191, 193 (2007)

    Article  ADS  Google Scholar 

  • A. Kidder, R.M. Winglee, E.M. Harnett, Regulation of the centrifugal interchange cycle in Saturn’s inner magnetosphere. J. Geophys. Res. 114, A02205 (2009). doi:10.1029/2008JA013100

    ADS  Google Scholar 

  • R.M. Killen, W.H. Ip, The surface-bounded atmospheres of mercury and the moon. Rev. Geophys. 37(3), 361 (1999)

    Article  ADS  Google Scholar 

  • R. Killen et al., Processes that promote and deplete the exosphere of Mercury. Space Sci. Rev. 132, 433 (2007)

    Article  ADS  Google Scholar 

  • Y.H. Kim et al., Hydrocarbon ions in the lower ionosphere of Saturn. J. Geophys. Res. 119, 384 (2014)

    Article  Google Scholar 

  • N. Kitamura et al., Photoelectron flows in the polar wind during geomagnetically quiet periods. J. Geophys. Res. 117, A07214 (2012). doi:10.1029/2011JA017459

    ADS  Google Scholar 

  • M.G. Kivelson et al., Intermittent short-duration magnetic field anomalies in the Io torus: Evidence for plasma interchange? Geophys. Res. Lett. 24, 2127 (1997)

    Article  ADS  Google Scholar 

  • M.G. Kivelson et al., Ganymede’s magnetosphere: Magnetometer overview. J. Geophys. Res. 103, 19963 (1998)

    Article  ADS  Google Scholar 

  • M.G. Kivelson et al., Moon-magnetosphere interaction: a tutorial. Adv. Space Res. 33, 2061 (2004)

    Article  ADS  Google Scholar 

  • S. Knight, Parallel electric fields. Planet. Space Sci. 21, 741 (1973)

    Article  ADS  Google Scholar 

  • J.U. Kozyra, M.W. Liemohn, C.R. Clauer, A.J. Ridley, M.F. Thomsen, J.E. Borovsky, J.L. Roeder, V.K. Jordanova, W.D. Gonzalez, Multistep Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm. J. Geophys. Res. 107, 1224 (2002). doi:10.1029/2001JA000023

    Google Scholar 

  • N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (San Francisco Press, Incorporated, San Francisco, 1986)

    Google Scholar 

  • S.M. Krimigis et al., Dynamics of Saturn’s magnetosphere from MIMI during Cassini’s orbital insertion. Science 307, 1270 (2005)

    Article  ADS  Google Scholar 

  • E.A. Kronberg et al., Comparison of periodic substorms at Jupiter and Earth. J. Geophys. Res. 113, A04212 (2008). doi:10.1029/2007JA012880

    ADS  Google Scholar 

  • N.A. Krupp et al., Global flows of energetic ions in Jupiter’s equatorial plane: First-order approximation. J. Geophys. Res. 106, 26,017 (2001). doi:10.1029/2000JA900138

    Article  ADS  Google Scholar 

  • N.A. Krupp et al., Dynamics of the Jovian magnetosphere, in Jupiter: The Planet, Satellites, and Magnetosphere, ed. by F. Bagenal et al. (Cambridge Univ. Press, Cambridge, 2004), p. 617, Chap. 25

    Google Scholar 

  • A. Lagg et al., In situ observations of a neutral gas torus at Europa. Geophys. Res. Lett. 30, 110000 (2003)

    Article  Google Scholar 

  • H.R. Lai et al., Reconnection at the magnetopause of Saturn: Perspective from FTE occurrence and magnetosphere size. J. Geophys. Res. 117, A05222 (2012). doi:10.1029/2011JA017263

    ADS  Google Scholar 

  • B. Lavraud, E. Larroque, E. Budnik et al., Asymmetry of magnetosheath flows and magnetopause shape during low Alfven Mach number solar wind. J. Geophys. Res. 118, 1089 (2013). doi:10.1002/jgra.50145

    Article  Google Scholar 

  • S.A. Ledvina, Y.-J. Ma, E. Kallio, Modeling and simulating flowing plasmas and related phenomena. Space Sci. Rev. 139, 143189 (2008). doi:10.1007/s11214-008-9384-6

    Article  Google Scholar 

  • M.W. Liemohn, J.U. Kozyra, Testing the hypothesis that charge exchange can cause a two-phase decay, in The Inner Magnetosphere: Physics and Modeling, ed. by T.I. Pulkkinen, N.A. Tsyganenko, R.H.W. Friedel, vol. 155 (American Geophysical Union Geophysical Monograph Series, Washington, 2005), p. 211

    Chapter  Google Scholar 

  • A. Lipatov, The Hybrid Multiscale Simulation Technology (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  • P. Louarn et al., Trapped electrons as a free energy source for auroral kilometric radiation. J. Geophys. Res. 95, 5983 (1990)

    Article  ADS  Google Scholar 

  • J.G. Luhmann et al., A model of the ionosphere of Saturn’s rings and its implications. Icarus 181, 465 (2006)

    Article  ADS  Google Scholar 

  • J.G. Lyon, J.A. Fedder, C.M. Mobarry, The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code. J. Atmos. Sol.-Terr. Phys. 66, 1333 (2004). doi:10.1016/j.jastp.2004.03.020

    Article  ADS  Google Scholar 

  • L.R. Lyons, Generation of large-scale regions of auroral currents, electric potentials, and precipitation by the divergence of the convection electric field. J. Geophys. Res. 85, 17 (1980)

    Article  ADS  Google Scholar 

  • R. Lysak, Electrodynamic couplig of the ionosphere and magnetosphere. Space Sci. Rev. 52, 33 (1990)

    Article  ADS  Google Scholar 

  • T. Majeed, J.C. McConnell, Voyager electron density measurements on Saturn: Analysis with a time dependent ionospheric model. J. Geophys. Res. 101, 7589 (1996). doi:10.1029/96JE00115

    Article  ADS  Google Scholar 

  • V. Mangano et al., The contribution of impact-generated vapour to the hermean atmosphere. Planet. Space Sci. 55(11), 1541 (2007)

    Article  ADS  Google Scholar 

  • M.L. Marconi, A kinetic model of Ganymede’s atmosphere. Icarus 190, 155 (2007)

    Article  ADS  Google Scholar 

  • G.T. Marklund, Electric fields and plasma processes in the auroral downward current region, below, within, and above the acceleration region. Space Sci. Rev. 142, 1 (2009). doi:10.1007/s11214-008-9373-9

    Article  ADS  Google Scholar 

  • A. Masters et al., Surface waves on Saturn’s dawn flank magnetopause driven by the Kelvin-Helmholtz instability. Planet. Space Sci. 57, 1769 (2009). doi:10.1016/j.pss.2009.02.010

    Article  ADS  Google Scholar 

  • A. Masters et al., Cassini observations of a Kelvin-Helmholtz vortex in Saturn’s outer magnetosphere. J. Geophys. Res. 115(A7), A07225 (2010). doi:10.1029/2010JA015351

    ADS  Google Scholar 

  • A. Masters et al., The importance of plasma b conditions for magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 39, L08103 (2012). doi:10.1029/2012GL051372

    Article  ADS  Google Scholar 

  • Y. Matsumoto, M. Hoshino, Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer. J. Geophys. Res. 111, A05213 (2006). doi:10.1029/2004JA010988

    ADS  Google Scholar 

  • Y. Matsumoto, K. Seki, Formation of a broad plasma turbulent layer by forward and inverse energy cascades of the Kelvin–Helmholtz instability. J. Geophys. Res. 115, A10231 (2010). doi:10.1029/2009JA014637

    Article  ADS  Google Scholar 

  • B.H. Mauk, Quantitative modeling of the “convection surge” mechanism of ion acceleration. J. Geophys. Res. 91, 13,423 (1986)

    Article  ADS  Google Scholar 

  • B.H. Mauk et al., Energetic neutral atoms from a trans-Europa gas torus at Jupiter. Nature 421, 920 (2003)

    Article  ADS  Google Scholar 

  • H.J. McAndrews et al., Evidence for reconnection at Saturn’s magnetopause. J. Geophys. Res. 113, A04210 (2008). doi:10.1029/2007JA012581

    ADS  Google Scholar 

  • M.B. McElroy, The ionospheres of the major planets. Space Sci. Rev. 14, 460 (1973)

    Article  ADS  Google Scholar 

  • J. McFadden, C. Carlson, R. Ergun, Microstructure of the auroral acceleration region as observed by FAST. J. Geophys. Res. 104(A7), 14453 (1999). doi:10.1029/1998JA900167

    Article  ADS  Google Scholar 

  • R.L. McNutt Jr. et al., Departure from rigid co-rotation of plasma in Jupiter’s dayside magnetosphere. Nature 280, 803 (1979)

    Article  ADS  Google Scholar 

  • B. Meinel, Doppler-shifted auroral hydrogen emission. Astrophys. J. 113, 50 (1951). doi:10.1086/145375

    Article  ADS  Google Scholar 

  • N. Meyer-Vernet, M. Moncuquet, S. Hoang, Temperature inversion in the Io plasma torus. Icarus 116, 202 (1995)

    Article  ADS  Google Scholar 

  • F.C. Michel, P.A. Sturrock, Centrifugal instability of the Jovian magnetosphere and its interaction with the solar wind. Planet. Space Sci. 22, 1501 (1974)

    Article  ADS  Google Scholar 

  • D.G. Mitchell et al., Current carriers in the near-earth cross-tail current sheet during substorm growth phase. Geophys. Res. Lett. 17, 583–586 (1990)

    Article  ADS  Google Scholar 

  • D.G. Mitchell et al., Global imaging of \(\mathrm{O}^{+}\) from IMAGE HENA. Space Sci. Rev. 109, 63 (2003)

    Article  ADS  Google Scholar 

  • T.E. Moore, J.L. Horwitz, Stellar ablation of planetary atmospheres. Rev. Geophys. 45, RG3002 (2007). doi:10.1029/2005RG000194

    ADS  Google Scholar 

  • F. Mottez, V. Génot, Electron acceleration by an Alfvénic pulse propagating in an auroral plasma cavity. J. Geophys. Res. 116, A00K15 (2011)

    ADS  Google Scholar 

  • F.S. Mozer, A. Hull, Origin and geometry of upward parallel electric fields in the auroral acceleration region. J. Geophys. Res. 106, 5763 (2001)

    Article  ADS  Google Scholar 

  • F.S. Mozer et al., Observations of paired electrostatic shocks in the polar magnetosphere. Phys. Rev. Lett. 38, 292 (1977)

    Article  ADS  Google Scholar 

  • F.S. Mozer et al., Satellite measurements and theories of low altitude auroral particle acceleration. Space Sci. Rev. 27, 155 (1980)

    Article  ADS  Google Scholar 

  • M. Müller et al., Estimation of the dust flux near Mercury. Planet. Space Sci. 50, 1101 (2002)

    Article  ADS  Google Scholar 

  • A. Mura et al., The sodium exosphere of Mercury: Comparison between observations during Mercury’s transit and model results. Icarus 200, 1 (2009)

    Article  ADS  Google Scholar 

  • A.F. Nagy, T.E. Cravens, S.G. Smith, H.A. Taylor Jr., H.C. Brinton, Model calculations of the dayside ionosphere of Venus: Ionic composition. J. Geophys. Res. 85, 7795–7801 (1980)

    Article  ADS  Google Scholar 

  • T.K.M. Nakamura, M. Fujimoto, A. Otto, Structure of an MHD-scale Kelvin–Helmholtz vortex: Two-dimensional two-fluid simulations including finite electron inertial effects. J. Geophys. Res. 113, A09204 (2008). doi:10.1029/2007JA012803

    ADS  Google Scholar 

  • A.I. Neishtadt, On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom. J. Appl. Math. 51, 586 (1987)

    MathSciNet  Google Scholar 

  • P.T. Newell et al., Characterizing the state of the magnetosphere: Testing the ion precipitation maxima latitude (b2i) and the ion isotropy boundary. J. Geophys. Res. 103, 4739 (1998)

    Article  ADS  Google Scholar 

  • J.D. Nichols, S.W.H. Cowley, D.J. McComas, Magnetopause reconnection rate estimates for Jupiter’s magnetosphere based on interplanetary measurements at ∼5AU. Ann. Geophys. 24, 393 (2006)

    Article  ADS  Google Scholar 

  • P. Norqvist et al., Ion cyclotron heating in the dayside magnetosphere. J. Geophys. Res. 101, 13,179 (1996)

    Article  ADS  Google Scholar 

  • T.G. Northrop, The Adiabatic Motion of Charged Particles (Wiley Interscience, New York, 1963)

    MATH  Google Scholar 

  • T.G. Northrop, J.R. Hill, Stability of negatively charged dust grains in Saturn’s ring plane. J. Geophys. Res. 87, 6045 (1983)

    Article  ADS  Google Scholar 

  • M. Nosé et al., Acceleration of oxygen ions of ionospheric origin in the near-Earth magnetotail during substorms. J. Geophys. Res. 105, 7669 (2000)

    Article  ADS  Google Scholar 

  • K. Nykyri, A. Otto, Plasma transport at the magnetospheric boundary due to reconnection in Kelvin–Helmholtz vortices. Geophys. Res. Lett. 28(18), 3565 (2001). doi:10.1029/2001GL013239

    Article  ADS  Google Scholar 

  • K. Nykyri et al., Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank. Ann. Geophys. 24, 2619 (2006)

    Article  ADS  Google Scholar 

  • Y. Ogawa, K. Seki, M. Hirahara et al., Coordinated EISCAT Svalbard radar and Reimei satellite observations of ion upflows and suprathermal ions. J. Geophys. Res. 113, A05306 (2008). doi:10.1029/2007JA012791

    ADS  Google Scholar 

  • T.R. Ogino, R.J. Walker, M.G. Kivelson, A global magnetohydrodynamic simulation of the Jovian magnetosphere. J. Geophys. Res. 84, 47 (1998)

    Google Scholar 

  • M. Øieroset et al., A statistical study of ion beams and conics from the dayside ionosphere during different phases of a substorm. J. Geophys. Res. 104, 6987 (1999)

    Article  ADS  Google Scholar 

  • Y.M. Ono et al., The role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization. J. Geophys. Res. 114 (2009). doi:10.1029/2008JA013918

  • S. Orsini, A. Milillo, Magnetospheric plasma loss processes and energetic neutral atoms. Il Nuovo Cimento 22(5), 633 (1999)

    ADS  Google Scholar 

  • N. Østgaard, S.B. Mende, H.U. Frey, G.R. Gladstone, H. Lauche, Neutral hydrogen density profiles derived from geocoronal imaging. J. Geophys. Res. 108, 1300 (2003). doi:10.1029/2002JA009749

    Article  Google Scholar 

  • L. Pallier, R. Prangé, Detection of the southern counterpart of the north FUV polar cusp. Shared properties. Geophys. Res. Lett. 31, L06701 (2004)

    Article  ADS  Google Scholar 

  • C. Paranicas et al., The ion environment near Europa and its role in surface energetics. Geophys. Res. Lett. 29(5), 1074 (2002). doi:10.1029/2001GL014127

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary magnetic field. Astrophys. J. 128, 664 (1958)

    Article  ADS  Google Scholar 

  • G.S. Paschmann, Recent in-situ observations of magnetic reconnection in near-Earth space. Geophys. Res. Lett. 35, L19109 (2008). doi:10.1029/2008GL035297

    Article  ADS  Google Scholar 

  • G. Paschmann, S. Haaland, R. Treumann (eds.), Auroral Plasma Physics (Kluwer Academic, Dordrecht, 2003)

    Google Scholar 

  • G. Paschmann, M. Øieroset, T. Phan, In-situ observations of reconnection in space. Space Sci. Rev. 178, 385–417 (2013). doi:10.1007/s11214-012-9957-2

    Article  ADS  Google Scholar 

  • R.J. Pellinen, W.J. Heikkila, Energization of charged particles to high energies by an induced substorm electric field within the magnetotail. J. Geophys. Res. 83, 1544 (1978)

    Article  ADS  Google Scholar 

  • P. Perreault, S.I. Akasofu, Study of geomagnetic storms. Geophys. J. R. Astron. Soc. 54(3), 547 (1978)

    Article  ADS  Google Scholar 

  • C. Peymirat, D. Fontaine, Numerical simulation of the magnetospheric convection including the effect of field-aligned currents and electron precipitation. J. Geophys. Res. 99, 11155 (1994)

    Article  ADS  Google Scholar 

  • T.D. Phan, M. Oieroset, M. Fujimoto, Reconnection at the dayside low-latitude magnetopause and its nonrole in low-latitude boundary layer formation during northward interplanetary magnetic field. Geophys. Res. Lett. 32, L17101 (2005). doi:10.1029/2005GL023355

    Article  ADS  Google Scholar 

  • T.D. Phan, G. Paschmann, J.T. Gosling, M. Oieroset, M. Fujimoto, J.F. Drake, V. Angelopoulos, The dependence of magnetic reconnection on plasma b and magnetic shear: evidence from magnetopause observations. Geophys. Res. Lett. 40, 11 (2013). doi:10.1029/2012GL054528

    Article  ADS  Google Scholar 

  • W.G. Pilipp, G. Morfill, The formation of the plasma sheet resulting from plasma mantle dynamics. J. Geophys. Res. 83, 5670 (1978)

    Article  ADS  Google Scholar 

  • C. Plainaki et al., Neutral particle release from Europa’s surface. Icarus 210, 385 (2010)

    Article  ADS  Google Scholar 

  • C. Plainaki et al., The role of sputtering and radiolysis in the generation of Europa exosphere. Icarus 218(2), 956 (2012). doi:10.1016/j.icarus.2012.01.023

    Article  ADS  Google Scholar 

  • C. Plainaki et al., Exospheric O2 densities at Europa during different orbital phases. Planet. Space Sci. 88, 42 (2013)

    Article  ADS  Google Scholar 

  • C. Plainaki et al., The H2O and O2 exospheres of Ganymede: the result of a complex interaction between the jovian magnetospheric ions and the icy moon. Icarus 245, 306 (2015)

    Article  ADS  Google Scholar 

  • D.H. Pontius, Coriolis influences on the interchange instability. Geophys. Res. Lett. 24, 2961 (1997)

    Article  ADS  Google Scholar 

  • A.E. Potter, Chemical sputtering could produce sodium vapour and ice on Mercury. Geophys. Res. Lett. 22(23), 3289 (1995)

    Article  ADS  Google Scholar 

  • K.G. Powell et al., A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154(2), 284 (1999). doi:10.1006/jcph.1999.6299

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • R. Prangé, The UV and IR Jovian aurorae. Adv. Space Res. 12(8), 379 (1992)

    Article  ADS  Google Scholar 

  • R. Prangé et al., Rapid energy dissipation and variability of the Io-Jupiter electrodynamic circuit. Nature 379, 323 (1996)

    Article  ADS  Google Scholar 

  • R. Prangé et al., Detailed study of FUV Jovian auroral features with the post COSTAR Hubble Faint Object Camera. J. Geophys. Res. 103, 20195 (1998)

    Article  ADS  Google Scholar 

  • P.L. Pritchett, Electron-cyclotron maser instability in relativistic plasmas. Phys. Fluids 29, 2919 (1986)

    Article  ADS  Google Scholar 

  • W.R. Pryor et al., The auroral footprint of Enceladus on Saturn. Nature 472, 331 (2011)

    Article  ADS  Google Scholar 

  • J.D. Raeder et al., Open GGCM simulations for the THEMIS mission. Space Sci. Rev. 141, 535 (2008). doi:10.1007/s11214-008-9421-5

    Article  ADS  Google Scholar 

  • J. Raines et al., Space Sci. Rev. (2015, this issue)

  • R.L. Rairden, L.A. Frank, J.D. Craven, Geocoronal imaging with Dynamics Explorer. J. Geophys. Res. 91, 13,613 (1986). doi:10.1029/JA091iA12p13613

    Article  ADS  Google Scholar 

  • L.C. Ray et al., Current-voltage relation of a centrifugally confined plasma. J. Geophys. Res. 114, A04214 (2009). doi:10.1029/2008JA013969

    ADS  Google Scholar 

  • C.T. Reimann et al., Ion-induced molecular ejection from \(\mathrm{D}_{2}\mathrm{O}\) ice. Surf. Sci. 147, 227 (1984)

    Article  ADS  Google Scholar 

  • H.E. Roosendaal, R.A. Hating, J.B. Sanders, Surface disruption as an observable factor in the energy distribution of sputtered particles. Nucl. Instrum. Methods 194, 579 (1982)

    Article  ADS  Google Scholar 

  • H. Rosenbauer, H. Grunwaldt, M.D. Montgomery, G. Paschmann, N. Sckopke, Heos 2 plasma observations in the distant polar magnetosphere: the plasma mantle. J. Geophys. Res. 80, 2723 (1975)

    Article  ADS  Google Scholar 

  • A.A. Roux et al., Auroral kilometric radiation sources: in situ and remote sensing observations from Viking. J. Geophys. Res. 98, 11657 (1993)

    Article  ADS  Google Scholar 

  • C.T. Russell et al., Localized reconnection in the near Jovian magnetotail. Science 280, 1061 (1998). doi: 10.1126/science.280.5366.1061

    Article  ADS  Google Scholar 

  • P.E. Sandholt et al., Dayside auroral configurations: Responses to southward and northward rotations of the interplanetary magnetic field. J. Geophys. Res. 103(20), 279 (1998)

    Google Scholar 

  • R.W. Schunk, A.F. Nagy, Ionospheres of the terrestrial planets. Rev. Geophys. 18, 813–852 (1980)

    Article  ADS  Google Scholar 

  • R.W. Schunk, A.F. Nagy, Ionospheres, 2nd edn. (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  • R.W. Schunk, J.J. Sojka, Global ionosphere–polar wind system during changing magnetic activity. J. Geophys. Res. 102, 11625 (1997)

    Article  ADS  Google Scholar 

  • L. Scurry, C.T. Russell, Proxy studies of energy transfer to the magnetosphere. J. Geophys. Res. 96, 9541 (1991)

    Article  ADS  Google Scholar 

  • V.A. Sergeev et al., Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planet. Space Sci. 31, 1147 (1983)

    Article  ADS  Google Scholar 

  • V.A. Sergeev, M. Malkov, K. Mursula, Testing the isotropic boundary algorithm to evaluate the magnetic field configuration of the tail. J. Geophys. Res. 98, 7609 (1993)

    Article  ADS  Google Scholar 

  • V.P. Shabansky, Some processes in the magnetosphere. Space Sci. Rev. 12, 299 (1971)

    Article  ADS  Google Scholar 

  • V.I. Shematovich et al., Surface-bounded atmosphere of Europa. Icarus 173, 480 (2005)

    Article  ADS  Google Scholar 

  • M. Shi, R.A. Baragiola, D.E. Grosjean, R.E. Johnson, S. Jurac, J. Schou, Sputtering of water ice surfaces and the production of extended neutral atmospheres. J. Geophys. Res. 100, 26387 (1995)

    Article  ADS  Google Scholar 

  • P. Sigmund, Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline (1969)

  • G.L. Siscoe, On the equatorial confinement and velocity space distribution of satellite ions in Jupiter’s magnetosphere. J. Geophys. Res. 82, 1641 (1977)

    Article  ADS  Google Scholar 

  • G. Siscoe, L. Christopher, Variations in the solar wind stand-off distance at Mercury. Geophys. Res. Lett. 2, 158 (1975)

    Article  ADS  Google Scholar 

  • J.A. Slavin, Traveling compression regions, in New Perspectives in Magnetotail Physics, ed. by A. Nishida, S.W.H. Cowley, D.N. Baker. AGU Monograph, vol. 105 (AGU, Washington, 1998), pp. 225–240

    Chapter  Google Scholar 

  • J.A. Slavin, R.E. Holzer, J.R. Spreiter, S.S. Stahara, Planetary mach cones: theory and observation. J. Geophys. Res. 89, 2708 (1984)

    Article  ADS  Google Scholar 

  • J.A. Slavin et al., Geotail observations of magnetic flux ropes in the plasma sheet. J. Geophys. Res. 108(A1), 1015 (2003). doi:10.1029/2002JA009557

    Article  Google Scholar 

  • J.A. Slavin, M.H. Acuna, B.J. Anderson et al., MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science 324(5927), 606 (2009). doi:10.1126/science.1172011

    Article  ADS  Google Scholar 

  • J.A. Slavin et al., MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res. 117, A01215 (2012a). doi:10.1029/2011JA016900

    ADS  Google Scholar 

  • J.A. Slavin et al., MESSENGER observations of flux transfer events at Mercury. J. Geophys. Res. 117, A00M06 (2012b). doi:10.1029/2012JA017926

    ADS  Google Scholar 

  • J.A. Slavin et al., MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J. Geophys. Res. 119, 8087–8116 (2014)

    Article  Google Scholar 

  • P.H. Smith, N.K. Bewtra, Charge exchange lifetimes for ring current ions. Space Sci. Rev. 22, 301 (1978). doi:10.1007/BF00239804

    Article  ADS  Google Scholar 

  • W.H. Smyth, M.L. Marconi, Europa’s atmosphere, gas tori, and magnetospheric implications. Icarus 181, 510 (2006)

    Article  ADS  Google Scholar 

  • S.C. Solomon, Auroral electron transport using the Monte Carlo method. Geophys. Res. Lett. 20, 185 (1993)

    Article  ADS  Google Scholar 

  • B.U.O. Sonnerup, Adiabatic particle orbits in a magnetic null sheet. J. Geophys. Res. 76, 8211 (1971)

    Article  ADS  Google Scholar 

  • B.U.O. Sonnerup, The magnetopause reconnection rate. J. Geophys. Res. 79, 1546 (1974). doi:10.1029/JA079i010p01546

    Article  ADS  Google Scholar 

  • T.W. Speiser, Particle trajectory in model current sheets, 1, Analytical solutions. J. Geophys. Res. 70, 4219 (1965)

    Article  ADS  Google Scholar 

  • W.N. Spjeldvik, Equilibrium structure of equatorially mirroring radiation belt protons. J. Geophys. Res. 82, 2801 (1977). doi:10.1029/JA082i019p02801

    Article  ADS  Google Scholar 

  • W.N. Spjeldvik, T.A. Fritz, Theory for charge states of energetic oxygen ions in the earth’s radiation belts. J. Geophys. Res. 83, 1583 (1978). doi:10.1029/JA083iA04p01583

    Article  ADS  Google Scholar 

  • R.J. Strangeway et al., Factors controlling ionospheric outflows as observed at intermediate altitudes. J. Geophys. Res. 110, A03221 (2005). doi:10.1029/2004JA010829

    ADS  Google Scholar 

  • G.W. Stuart, Satellite-measured radiation. Phys. Rev. Lett. 2, 417 (1959)

    Article  ADS  Google Scholar 

  • M. Sugiura, Hourly Values of Equatorial Dst for the IGY. Ann. Int. Geophys. Year, vol. 35 (Pergamon Press, Oxford, 1964), p. 9

    Google Scholar 

  • T.S. Sundberg et al., MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res. 117, A04216 (2012)

    ADS  Google Scholar 

  • K. Szegö et al., Physics of mass loaded plasmas. Space Sci. Rev. 94, 429 (2000)

    Article  ADS  Google Scholar 

  • S.W.Y. Tam, T. Chang, V. Pierrard, Kinetic modeling of the polar wind. J. Atmos. Sol.-Terr. Phys. 69, 1984 (2007)

    Article  ADS  Google Scholar 

  • B.D. Teolis, R.A. Vidal, J. Shi, R.A. Baragiola, Mechanisms of O2 sputtering from water ice by keV ions. Phys. Rev. B 72, 245422 (2005). 2005. doi:10.1103/PhysRevB.72.245422

    Article  ADS  Google Scholar 

  • N. Terada, H. Shinagawa, T. Tanaka, K. Murawski, K. Terada, A three-dimensional, multispecies, comprehensive MHD model of the solar wind interaction with the planet Venus. J. Geophys. Res. 114, A09208 (2009). doi:10.1029/2008JA013937

    ADS  Google Scholar 

  • T. Terasawa et al., Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration. Geophys. Res. Lett. 24(8), 935 (1997). doi:10.1029/96GL04018

    Article  ADS  Google Scholar 

  • B.T. Thomas, E.J. Smith, The Parker spiral configuration of the interplanetary magnetic field between 1 and 8.5 AU. J. Geophys. Res. 85, 6861 (1980)

    Article  ADS  Google Scholar 

  • N. Thomas, F. Bagenal, T.W. Hill, J.K. Wilson, The Io neutral cloud and plasma torus, in Jupiter: The Planet, Satellites, and Magnetosphere, ed. by F. Bagenal et al. (Cambridge Univ. Press, Cambridge, 2004), p. 560, Chap. 23

    Google Scholar 

  • M.F. Thomsen et al., Survey of ion plasma parameters in Saturn’s magnetosphere. J. Geophys. Res. 115, A10220 (2010). doi:10.1029/2010JA015267

    Article  ADS  Google Scholar 

  • R.M. Thorne et al., Galileo evidence for rapid interchange transport in the Io torus. Geophys. Res. Lett. 24, 2131 (1997)

    Article  ADS  Google Scholar 

  • G. Toth et al., Space weather modeling framework: a new tool for the space science community. J. Geophys. Res. 110, 12,226 (2005). doi:10.1029/2005JA011126

    Article  Google Scholar 

  • G. Toth et al., Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231(3), 870–903 (2012). doi:10.1016/j.jcp.2011.02.006

    Article  MathSciNet  ADS  Google Scholar 

  • R.A. Treumann, The electron–cyclotron maser for astrophysical application. Astron. Astrophys. Rev. 13, 229 (2006)

    Article  ADS  Google Scholar 

  • V. Vasyliunas, Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere, ed. by B. McCormac (Reidel, Hingham, 1970)

    Google Scholar 

  • V.M. Vasyliunas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge Univ. Press, Cambridge, 1983), p. 395

    Chapter  Google Scholar 

  • M.F. Vogt et al., Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. 115, A06219 (2010). doi:10.1029/2009JA015098

    ADS  Google Scholar 

  • M.F. Vogt et al., Structure and statistical properties of plasmoids in Jupiter’s magnetotail. J. Geophys. Res. 119, 821 (2014). doi:10.1002/2013JA019393

    Article  Google Scholar 

  • J.H. Waite et al., An auroral flare at Jupiter. Nature 410, 787 (2001)

    Article  ADS  Google Scholar 

  • J.A. Wanliss, K.M. Showalter, High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. 111(A2), A02202 (2006). doi:10.1029/2005JA011034

    ADS  Google Scholar 

  • D. Welling et al., Space Sci. Rev. (2015, this issue)

  • M.S. Westley et al., Photodesorption from low-temperature water ice in interstellar and circumstellar grains. Nature 373, 405 (1995)

    Article  ADS  Google Scholar 

  • D.J. Williams, Ring current composition and sources: An update. Planet. Space Sci. 29, 1195 (1981)

    Article  ADS  Google Scholar 

  • R.J. Wilson, R.L. Tokar, M.G. Henderson, Thermal ion flow in Saturn’s inner magnetosphere measured by the Cassini plasma spectrometer: A signature of the Enceladus torus? Geophys. Res. Lett. 36, L23104 (2009). doi:10.1029/2009GRL040225

    Article  ADS  Google Scholar 

  • M. Wiltberger et al., Influence of cusp \(\mathrm{O}^{+}\) outflow on magnetotail dynamics in a multifluid MHD model of the magnetosphere. J. Geophys. Res. 115, A00J05 (2010). doi:10.1029/2010JA015579

    ADS  Google Scholar 

  • S. Wing, P.T. Newell, 2D plasma sheet ion density and temperature profiles for northward and southward IMF. Geophys. Res. Lett. 29(9), 1307 (2002). doi:10.1029/2001GL013950

    Article  ADS  Google Scholar 

  • R.M. Winglee et al., Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross-polar cap potential. J. Geophys. Res. 107, 1237 (2002). doi:10.1029/2001JA000214

    Article  Google Scholar 

  • D. Winske, L. Yin, N. Omidi, H. Karimabadi, K. Quest, Hybrid simulation codes: Past, present and future—A tutorial, in Space Plasma Simulation, ed. by J. Büchner, C. Dum, M. Scholer. Lect. Notes Phys., vol. 615 (2003), pp. 136–165

    Chapter  Google Scholar 

  • R.A. Wolf, Ionosphere-magnetosphere coupling. Space Sci. Rev. 17, 535 (1979)

    ADS  Google Scholar 

  • C.S. Wu, L.C. Lee, A theory of the terrestrial kilometric radiation. Astrophys. J. 230, 621 (1979)

    Article  ADS  Google Scholar 

  • X.-Y. Wu, J.L. Horwitz, J.-N. Tu, Dynamic fluid kinetic (DyFK) simulation of auroral ion transport: Synergistic effects of parallel potentials, transverse ion heating, and soft electron precipitation. J. Geophys. Res. 107(A10), 1283 (2002). doi:10.1029/2000JA000190

    Article  Google Scholar 

  • P. Wurz, H. Lammer, Monte-Carlo simulation of Mercury’s exosphere. Icarus 164, 1 (2003)

    Article  ADS  Google Scholar 

  • P. Wurz et al., The lunar exosphere: the sputtering contribution. Icarus 191, 486–496 (2007). doi:10.1016/j.icarus.2007.04.034

    Article  ADS  Google Scholar 

  • P. Wurz et al., Self-consistent modelling of Mercury’s exosphere by sputtering, micro-meteorite impact and photon-stimulated desorption. Planet. Space Sci. 58, 1599 (2010)

    Article  ADS  Google Scholar 

  • B.V. Yakshinskiy, T.E. Madey, Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere. Nature 400, 642 (1999)

    Article  ADS  Google Scholar 

  • B.V. Yakshinskiy, T.E. Madey, Electron- and photon-stimulated desorption of K from ice surfaces. J. Geophys. Res. 106, 33303 (2001)

    Article  ADS  Google Scholar 

  • B.V. Yakshinskiy, T.E. Madey, Temperature-dependent DIET of alkalis from SiO2 films: Comparison with a lunar sample. Surf. Sci. 593, 202 (2005)

    Article  ADS  Google Scholar 

  • A.W. Yau, M. Andre, Sources of ion outflow in the high latitude ionosphere. Space Sci. Rev. 80, 1 (1997). doi:10.1023/A:1004947203046

    Article  ADS  Google Scholar 

  • A.W. Yau, T. Abe, W.K. Peterson, The polar wind: Recent observations. J. Atmos. Sol.-Terr. Phys. 69, 1936 (2007)

    Article  ADS  Google Scholar 

  • K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302 (1966)

    Article  ADS  MATH  Google Scholar 

  • Y. Yu, A.J. Ridley, Exploring the influence of ionospheric \(\mathrm{O}^{+}\) outflow on magnetospheric dynamics: dependence on the source location. J. Geophys. Res. 118, 1711 (2013). doi:10.1029/2012JA018411

    Article  Google Scholar 

  • P. Zarka, Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103, 20159 (1998)

    Article  ADS  Google Scholar 

  • J.F. Ziegler, SRIM-2003. Nucl. Instrum. Methods B 219, 1027 (2004)

    Article  ADS  Google Scholar 

  • J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids. Stopping and Ranges of Ions in Matter, vol. 1 (Pergamon Press, New York, 1984)

    Google Scholar 

  • J.H. Zoennchen, U. Nass, G. Lay, H.J. Fahr, 3-D-geocoronal hydrogen density derived from TWINS Ly-alpha-data. Ann. Geophys. 28, 1221 (2010). doi:10.5194/angeo-28-1221-2010

    Article  ADS  Google Scholar 

  • J.H. Zoennchen, J.J. Bailey, U. Nass, M. Gruntman, H.J. Fahr, J. Goldstein, The TWINS exospheric neutral H-density distribution under solar minimum conditions. Ann. Geophys. 29, 2211 (2011)

    Article  ADS  Google Scholar 

  • B.J. Zwan, R.A. Wolf, Depletion of solar-wind plasma near a planetary boundary. J. Geophys. Res. 81, 1636 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grant-In-Aid for Scientific Research (B) 24340118 from JSPS and MEXT of Japan. KS also thanks for supports from the GEMSIS project at STEL, Nagoya University. CMJ’s work at Southampton was supported by a Royal Astronomical Society Fellowship and a Science and Technology Facilities Council Ernest Rutherford Fellowship. FC is funded by JPL contract 1467206. MW is supported by NASA grants NNH12AU10I and NNH11AR82I. The National Center for Atmospheric Research is sponsored by the National Science Foundation. XJ is supported by NASA grants NNX12AK34G and NNX12AM74G, and by NSF grant AGS 1203232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Seki.

Ethics declarations

Ethical Statement

This manuscript is prepared to submit to SSR as a review article after discussion at the ISSI workshop in 2013 and never submitted to elsewhere. Contents of this manuscript have nothing to do with the following issues:

  • Disclosure of potential conflicts of interest,

  • Research involving Human Participants and/or Animals,

  • Informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seki, K., Nagy, A., Jackman, C.M. et al. A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres. Space Sci Rev 192, 27–89 (2015). https://doi.org/10.1007/s11214-015-0170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0170-y

Keywords

Navigation