Skip to main content
Log in

OpenGGCM Simulations for the THEMIS Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The THEMIS mission provides unprecedented multi-point observations of the magnetosphere in conjunction with an equally unprecedented dense network of ground measurements. However, coverage of the magnetosphere is still sparse. In order to tie together the THEMIS observations and to understand the data better, we will use the Open Geospace General Circulation Model (OpenGGCM), a global model of the magnetosphere-ionosphere system. OpenGGCM solves the magnetohydrodynamic (MHD) equations in the outer magnetosphere and couples via field aligned current (FAC), electric potential, and electron precipitation to a ionosphere potential solver and the Coupled Thermosphere Ionosphere Model (CTIM). The OpenGGCM thus provides a global comprehensive view of the magnetosphere-ionosphere system. An OpenGGCM simulation of one of the first substorms observed by THEMIS on 23 March 2007 shows that the OpenGGCM reproduces the observed substorm signatures very well, thus laying the groundwork for future use of the OpenGGCM to aid in understanding THEMIS data and ultimately contributing to a comprehensive model of the substorm process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.-I. Akasofu, The development of the auroral substorm. Planet. Space Sci. 12, 273 (1964)

    Article  ADS  Google Scholar 

  • S.-I. Akasofu, Physics of Magnetospheric Substorms (Reidel, Dordrecht, 1977)

    Google Scholar 

  • V. Angelopoulos, The THEMIS mission. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9336-1

    MATH  Google Scholar 

  • V. Angelopoulos et al., First results from the THEMIS mission. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9378-4

    MATH  Google Scholar 

  • D.N. Baker, T.I. Pulkkinen, J. Büchner, A.J. Klimas, Substorms: A global instability of the magnetosphere-ionosphere system. J. Geophys. Res. 104, 14,601 (1999)

    ADS  Google Scholar 

  • J.U. Brackbill, D.C. Barnes, The effect of nonzero div B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • B.A. Emery et al., Comparing POLAR UVI imager data and other conductance sources in AMIE. Eos Trans. AGU 77(46), 613 (1996)

    Google Scholar 

  • C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flows: A constrained transport method. Astrophys. J. 332, 659 (1988)

    Article  ADS  Google Scholar 

  • D.H. Fairfield, Advances in magnetospheric storm and substorm research: 1989–1991. J. Geophys. Res. 97, 10,865 (1992)

    ADS  Google Scholar 

  • J.A. Fedder, J.G. Lyon, The solar wind-magnetosphere-ionosphere current-voltage relationship. Geophys. Res. Lett. 14, 880 (1987)

    Article  ADS  Google Scholar 

  • J.A. Fedder, S.P. Slinker, J.G. Lyon, R.D. Elphinstone, Global numerical simulation of the growth phase and the expansion onset for a substorm observed by Viking. J. Geophys. Res. 100, 19,083 (1995)

    ADS  Google Scholar 

  • T.J. Fuller-Rowell, D. Rees, S. Quegan, R.J. Moffett, M.V. Codrescu, G.H. Millward, A coupled thermosphere-ionosphere model (CTIM), in STEP Report, ed. by R.W. Schunk (Scientific Committee on Solar Terrestrial Physics (SCOSTEP), NOAA/NGDC, Boulder, 1996), p. 217

    Google Scholar 

  • G.A. Germany, G.K. Parks, M. Brittnacher, J. Cumnock, D. Lummerzheim, J.F. Spann, L. Chen, P.G. Richards, F.J. Rich, Remote determination of auroral energy characteristics during substorm activity. Geophys. Res. Lett. 24, 995 (1997)

    Article  ADS  Google Scholar 

  • A. Harten, G. Zwas, Self-adjusting hybrid schemes for shock computations. J. Comput. Phys. 9, 568 (1972)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • C. Hirsch, Numerical Computation of Internal and External Flow, vol. II (Wiley, New York, 1990)

    Google Scholar 

  • A. Keiling et al., Correlation of substorm injections, auroral modulations, and ground Pi2. Geophys. Res. Lett. 35, L17S22 (2008). doi:10.1029/2008GL033969

    Article  Google Scholar 

  • M.C. Kelley, The Earth’s Ionosphere (Academic Press, New York, 1989)

    Google Scholar 

  • C.F. Kennel, The Kiruna conjecture: The strong version, in Substorms I, vol. SP-335 (ESA, Noordwijk, 1992), p. 599

    Google Scholar 

  • S. Knight, Parallel electric fields. Planet. Space Sci. 21, 741 (1972)

    Article  ADS  Google Scholar 

  • C.B. Laney, Computational Gasdynamics (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  • A.T.Y. Lui, Extended consideration of a synthesis model for magnetic substorms, in Magnetospheric Substorms, ed. by J.R. Kan, T.A. Potemra, S. Kokubun, T. Ijima. AGU Geophys. Monogr. Ser., vol. 64 (American Geophysical Union, Washington, 1991), p. 43

    Google Scholar 

  • D. Lummerzheim, M. Brittnacher, D. Evans, G.A. Germany, G.K. Parks, M.H. Rees, J.F. Spann, High time resolution study of the hemispheric power carried by energetic electrons into the ionosphere during the May 19/20, 1996 auroral activity. Geophys. Res. Lett. 24, 987 (1997)

    Article  ADS  Google Scholar 

  • R.L. McPherron, Physical processes producing magnetospheric substorms and magnetic storms, in Geomagnetism, vol. 4, ed. by J. Jacobs (Academic Press, New York, 1991), p. 593

    Google Scholar 

  • J. Raeder, Global magnetohydrodynamics—A tutorial, in Space Plasma Simulation, ed. by J. Büchner, C.T. Dum, M. Scholer (Springer, Berlin, 2003)

    Google Scholar 

  • J. Raeder, N. Maynard, Foreword. J. Geophys. Res. 106, 345 (2001)

    Article  ADS  Google Scholar 

  • J. Raeder, J. Berchem, M. Ashour-Abdalla, The importance of small scale processes in global MHD simulations: Some numerical experiments, in The Physics of Space Plasmas, vol. 14, ed. by T. Chang, J.R. Jasperse (MIT Cent. for Theoret. Geo/Cosmo Plasma Phys., Cambridge, 1996), p. 403

    Google Scholar 

  • J. Raeder, Y.L. Wang, T. Fuller-Rowell, Geomagnetic storm simulation with a coupled magnetosphere—ionosphere—thermosphere model, in Space Weather, ed. by P. Song, G. Siscoe, H.J. Singer. AGU Geophys. Monogr. Ser., vol. 125 (American Geophysical Union, Washington, 2001a), p. 377

    Google Scholar 

  • J. Raeder et al., Global simulation of the geospace environment modeling substorm challenge event. J. Geophys. Res. 106, 381 (2001b)

    Article  ADS  Google Scholar 

  • H. Rishbeth, W. Deng, R.G. Roble, T.L. Killeen, A.G. Burns, The flywheel effect: ionospheric currents after a geomagnetic storm. Geophys. Res. Lett. 18, 1845 (1991)

    Article  ADS  Google Scholar 

  • C.T. Russell, Y.L. Wang, J. Raeder, The interplanetary shock of September 24, 1998: Arrival at Earth. J. Geophys. Res. 105, 25,143 (2001)

    ADS  Google Scholar 

  • D.G. Sibeck, V. Angelopoulos, THEMIS science objectives and mission phases. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9393-5

    Google Scholar 

  • S.P. Slinker, J.A. Fedder, J.G. Lyon, Plasmoid formation and evolution in a numerical simulation of a substorm. Geophys. Res. Lett. 22, 859 (1995)

    Article  ADS  Google Scholar 

  • B.U.O. Sonnerup, L.J. Cahill, Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res. 72, 171 (1967)

    Article  ADS  Google Scholar 

  • B.U.O. Sonnerup, L.J. Cahill, Explorer 12 observations of the magnetopause current layer. J. Geophys. Res. 73, 1757 (1968)

    Article  ADS  Google Scholar 

  • R.J. Strangeway, J. Raeder, On the transition from collisionless to collisional magnetohydrodynamics. J. Geophys. Res. 106, 1955 (2001)

    Article  ADS  Google Scholar 

  • G. Toth, The B constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • E.R. Tufte, Envisioning Information (Graphics Press, Cheshire, 1990)

    Google Scholar 

  • V.M. Vasyliunas, Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere (Dordrecht, Reidel, 1970), p. 61

    Google Scholar 

  • M. Wiltberger, T.I. Pulkkinen, J.G. Lyon, C.C. Goodrich, MHD simulation of the magnetotail during the December 10, 1996, substorm. J. Geophys. Res. 105, 27,649 (2000)

    Article  ADS  Google Scholar 

  • S.T. Zalesak, Fully multidimensional flux-corrected transport. J. Comput. Phys. 31, 355 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  • S.T. Zalesak, Very high order pseudospectral flux-corrected transport (FCT) algorithms for conservation laws, in Proceedings of the Fourth IMACS International Symposium on Computer Methods for Partial Differential Equations, ed. by R. Vichnevetsky, R.S. Stepleman (IMACS, Rutgers University, New Brunswick, 1981), p. 126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Raeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raeder, J., Larson, D., Li, W. et al. OpenGGCM Simulations for the THEMIS Mission. Space Sci Rev 141, 535–555 (2008). https://doi.org/10.1007/s11214-008-9421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-008-9421-5

Keywords

Navigation