Skip to main content
Log in

Electrodynamic coupling of the magnetosphere and ionosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The auroral zone ionosphere is coupled to the outer magnetosphere by means of field-aligned currents. Parallel electric fields associated with these currents are now widely accepted to be responsible for the acceleration of auroral particles. This paper will review the theoretical concepts and models describing this coupling. The dynamics of auroral zone particles will be described, beginning with the adiabatic motions of particles in the converging geomagnetic field in the presence of parallel potential drops and then considering the modifications to these adiabatic trajectories due to wave-particle interactions. The formation of parallel electric fields can be viewed both from microscopic and macroscopic viewpoints. The presence of a current carrying plasma can give rise to plasma instabilities which in a weakly turbulent situation can affect the particle motions, giving rise to an effective resistivity in the plasma. Recent satellite observations, however, indicate that the parallel electric field is organized into discrete potential jumps, known as double layers. From a macroscopic viewpoint, the response of the particles to a parallel potential drop leads to an approximately linear relationship between the current density and the potential drop.

The currents flowing in the auroral circuit must close in the ionosphere. To a first approximation, the ionospheric conductivity can be considered to be constant, and in this case combining the ionospheric Ohm's Law with the linear current-voltage relation for parallel currents leads to an outer scale length, above which electric fields can map down to the ionosphere and below which parallel electric fields become important. The effects of particle precipitation make the picture more complex, leading to enhanced ionization in upward current regions and to the possibility of feedback interactions with the magnetosphere.

Determining adiabatic particle orbits in steady-state electric and magnetic fields can be used to determine the self-consistent particle and field distributions on auroral field lines. However, it is difficult to pursue this approach when the fields are varying with time. Magnetohydrodynamic (MHD) models deal with these time-dependent situations by treating the particles as a fluid. This class of model, however, cannot treat kinetic effects in detail. Such effects can in some cases be modeled by effective transport coefficients inserted into the MHD equations. Intrinsically time-dependent processes such as the development of magnetic micropulsations and the response of the magnetosphere to ionospheric fluctuations can be readily treated in this framework.

The response of the lower altitude auroral zone depends in part on how the system is driven. Currents are generated in the outer parts of the magnetosphere as a result of the plasma convection. The dynamics of this region is in turn affected by the coupling to the ionosphere. Since dissipation rates are very low in the outer magnetosphere, the convection may become turbulent, implying that nonlinear effects such as spectral transfer of energy to different scales become important. MHD turbulence theory, modified by the ionospheric coupling, can describe the dynamics of the boundary-layer region. Turbulent MHD fluids can give rise to the generation of field-aligned currents through the so-called α-effect, which is utilized in the theory of the generation of the Earth's magnetic field. It is suggested that similar processes acting in the boundary-layer plasma may be ultimately responsible for the generation of auroral currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S.-I., Kimball, D. S., and Meng, C.-I.: 1965, ‘The Dynamics of the Aurora, 2, Westward Travelling Surges’,J. Atmospheric Terr. Phys. 27, 173.

    Google Scholar 

  • Alfvén, H. and Fälthammar, C.-G.: 1963,Cosmical Electrodynamics, Clarendon Press, Oxford.

    Google Scholar 

  • André, M., Koskinen, H., Gustafsson, G., and Lundin, R.: 1987, ‘Ion Waves and Upgoing Ion Beams Observed by the Viking Satellite’,Geophys. Res. Letters 14, 463.

    Google Scholar 

  • Arnoldy, R. L.: 1970, ‘Rapid Fluctuations of Energetic Auroral Particles’,J. Geophys. Res. 75, 228.

    Google Scholar 

  • Atkinson, G.: 1970, ‘Auroral Arcs: Result of the Interaction of a Dynamic Magnetosphere with the Ionosphere’,J. Geophys. Res. 75, 4746.

    Google Scholar 

  • Atkinson, G. and Hutchinson, D.: 1978, ‘Effect of the Day-Night Ionospheric Conductivity Grandient on Polar Cap Convective Flow’,J. Geophys Res. 83, 725.

    Google Scholar 

  • Barnes, C., Hudson, M. K., and Lotko, W.: 1985, ‘Weak Double Layers in Ion Acoustic Turbulence’,Phys. Fluids 28, 1055.

    Google Scholar 

  • Baumjohann, W. and Glassmeier, K.-H.: 1984, ‘The Transient Response Mechanism and Pi2 Pulsations at Substorm Onset — Review and Outlook’,Planetary Space Sci. 32, 1361.

    Google Scholar 

  • Bergmann, R. and Lotko, W.: 1986, ‘Transition to Unstable Ion Flow in Parallel Electric Fields’,J. Geophys. Res. 91, 7033.

    Google Scholar 

  • Bergmann, R., Roth, I., and Hudson, M. K.: 1988, ‘Linear Stability of the H+-O+ Two-Stream Interaction in a Magnetized Plasma’,J. Geophys. Res. 93, 4005.

    Google Scholar 

  • Bernstein, I. B., Greene, J. M., and Kruskal, M. D.: 1957, ‘Exact Nonlinear Plasma Oscillations’,Phys. Rev. Letters 108, 546.

    Google Scholar 

  • Bingham, R., Bryant, D. A., and Hall, D. S.: 1984, ‘A Wave Model for the Aurora’,Geophys. Res. Letters 11, 327.

    Google Scholar 

  • Birkeland, K.: 1908,The Norwegian Auroral Polaris Expedition 1902–1903, Vol. 1, Ascheborg, Christiana.

    Google Scholar 

  • Biskamp, D. and Welter, H.: 1983, ‘Negative Anomalous Resistivity — a Mechanism of the Major Disruption in Tokamaks’,Phys. Letters 96, 25.

    Google Scholar 

  • Block, L. P.: 1972, ‘Potential Double Layers in the Ionosphere’,Cosmic Electrodynamics 3, 349.

    Google Scholar 

  • Block, L. P.: 1975, in B. Hultqvist and L. Stenflo (eds.), ‘Double Layers’,Physics of the Hot Plasma in the Magnetosphere, Plenum, New York, p. 229.

    Google Scholar 

  • Bohm, D.: 1949, in A. Guthrie and R. K. Walkerling (eds.), ‘Minimum Ionic Kinetic Energy for a Stable Sheath’,The Characteristics of Electrical Discharges in Magnetic Fields, McGraw-Hill, New York, p. 77.

    Google Scholar 

  • Borovsky, J. E. and Joyce, G.: 1983, ‘Numerically Simulated Two-Dimensional Auroral Double Layers’,J. Geophys. Res. 88, 3116.

    Google Scholar 

  • Boström, R., Gustafsson, G., Holback, B., Holmgren, G., Koskinen, H., and Kintner, P.: 1988, ‘Characteristics of Solitary Waves and Weak Double Layers in the Magnetospheric Plasma’, IRF preprint 105.

  • Bösinger, T., Alanko, K., Kangas, J., Opgenoorth, H., and Baumjohann, W.: 1981, ‘Correlations between PiB Type Magnetic Micropulsations, Auroras and Equivalent Current Structures During Two Isolated Substorms’,J. Atmospheric Terr. Phys. 43, 933.

    Google Scholar 

  • Bryant, D. A., Hall, D. S., and Lepine, D. R.: 1978, ‘Electron Acceleration in an Array of Auroral Arcs’,Planetary Space Sci. 26, 81.

    Google Scholar 

  • Bujarbarua, S. and Schamel, H.: 1981, ‘Theory of Finite Amplitude Electron and Ion Holes’,Plasma Phys. 25, 515.

    Google Scholar 

  • Burch, J. L., Reiff, P. H., Menietti, J. D., Heelis, R. A., Hanson, W. B., Shawhan, S. D., Shelley, E. G., Sugiura, M., Weimer, D. R., and Winningham, J. D.: 1985, ‘IMFB y Dependent Plasma Flow and Birkeland Currents in the Dayside Magnetosphere, 1, Dynamics Explorer Observations’,J. Geophys. Res. 90, 1577.

    Google Scholar 

  • Calvert, W.: 1981, ‘The Auroral Plasma Cavity’,Geophys. Res. Letters 8, 919.

    Google Scholar 

  • Chang, T., Hudson, M. K., Jasperse, J. R., Johnson, R. G., Kintner, P. M., Schulz, M., and Crew, G. B. (eds.): 1986,Ion Acceleration in the Magnetosphere and Ionosphere, AGU Geophysical Monograph 38, American Geophysical Union, Washington.

    Google Scholar 

  • Chen, H. and Montgomery, D.: 1988, ‘Turbulent MHD Transport Coefficients: an Attempt at Self-Consistency’,Plasma Phys. Controlled Fusion 29, 205.

    Google Scholar 

  • Chiu, Y. T. and Cornwall, J. M.: 1980, ‘Electrostatic Model of a Quiet Auroral Arc’,J. Geophys. Res. 85, 543.

    Google Scholar 

  • Chiu, Y. T. and Schulz, M.: 1978, ‘Self-Consistent Particles and Parallel Electrostatic Field Distributions in the Magnetospheric-Ionospheric Auroral Region’,J. Geophys. Res. 83, 629.

    Google Scholar 

  • Chiu, Y. T., Newman, A. L., and Cornwall, J. M.: 1981, ‘On the Structure and Mapping of Auroral Electrostatic Potentials’,J. Geophys. Res. 86, 10029.

    Google Scholar 

  • Chiu, Y. T., Cornwall, J. M., Fennell, J. F., Gorney, D. J., and Mizera, P. F.: 1983, ‘Auroral Plasmas in the Evening Sector: Satellite Observations and Theoretical Interpretations’,Space Sci. Rev. 35, 211.

    Google Scholar 

  • Cornwall, J. M. and Chiu, Y. T.: 1982, ‘Effects of Turbulence on a Kinetic Auroral Arc Model’,J. Geophys. Res. 87, 1517.

    Google Scholar 

  • Coroniti, F. V. and Kennel, C. F.: 1972, ‘Polarization of the Auroral Electrojet’,J. Geophys. Res. 77, 2835.

    Google Scholar 

  • Coroniti, F. V.: 1985, ‘Space Plasma Turbulent Dissipation: Reality or Myth?’,Space Sci. Rev. 42, 399.

    Google Scholar 

  • Croley, D. R., Mizera, P., and Fennell, J. F.: 1978, ‘Signature of a Parallel Electric Field in Ion and Electron Distributions in Velocity Space’,J. Geophys. Res. 83, 2701.

    Google Scholar 

  • Dum, C. T. and Dupree, T. H.: 1970, ‘Nonlinear Stabilization of High Frequency Instabilities in a Magnetic Field’,Phys. Fluids 13, 2064.

    Google Scholar 

  • Dungey, J. W.: 1963, ‘Hydromagnetic Waves and the Ionosphere’,Proc. Int. Conference on the Ionosphere, Institute of Physics, London, p. 230.

    Google Scholar 

  • Ellis, P. and Southwood, D. J.: 1983, ‘Reflection of Alfvén Waves by Nonuniform Ionospheres’,Planetary Space Sci. 31, 107.

    Google Scholar 

  • Evans, D. S.: 1967, ‘A 10 cps Periodicity in the Precipitation of Auroral Zone Electrons’,J. Geophys. Res. 72, 4281.

    Google Scholar 

  • Evans, D. S.: 1974, ‘Precipitating Electrons Fluxes Formed by a Magnetic Field-Aligned Potential Difference’,J. Geophys. Res. 79, 2853.

    Google Scholar 

  • Fridman, M. and Lemaire, J.: 1980, ‘Relationship Between Auroral Electron Fluxes and Field Aligned Electric Potential Difference’,J. Geophys. Res. 85, 664.

    Google Scholar 

  • Ghielmetti, A. G., Johnson, R. G., Sharp, R. D., and Shelley, E. G.: 1978, ‘The Latitudinal, Diurnal, and Altitudinal Distributions of Upward Flowing Energetic Ions of Ionospheric Origin’,Geophys. Res. Letters 5, 59.

    Google Scholar 

  • Ghielmetti, A. G., Sharp, R. D., Shelley, E. G., and Johnson, R. G.: 1979, ‘Downward Flowing Ions and Evidence for Injection of Ionospheric Ions into the Plasma Sheet’,J. Geophys. Res. 84, 5781.

    Google Scholar 

  • Ghielmetti, A. G., Shelley, E. G., Collin, H. L., and Sharp, R. D.: 1986, in T. Changet al. (eds.), ‘Ion Specific Differences in Energetic Field Aligned Upflowing Ions at 1R E ’,Ion Acceleration in the Magnetosphere and Ionosphere, AGU Geophysical Monograph 38, American Geophysical Union, Washington, p. 77.

    Google Scholar 

  • Glassmeier, K.-H.: 1983, ‘Reflection of MHD Waves in the Pc4–5 Period Range at Ionospheres with Nonuniform Conductivity Distributions’,Geophys. Res. Letters 10, 678.

    Google Scholar 

  • Glassmeier, K.-H.: 1984, ‘On the Influence of Ionospheres with Nonuniform Conductivity Distribution on Hydromagnetic Waves’,J. Geophys. 54, 125.

    Google Scholar 

  • Goertz, C. K.: 1979, ‘Double Layers and Electrostatic Shocks in Space’,Rev. Geophys. Space Phys. 17, 418.

    Google Scholar 

  • Goertz, C. K. and Boswell, R. W.: 1979, ‘Magnetosphere-Ionosphere Coupling’,J. Geophys. Res. 84, 7239.

    Google Scholar 

  • Goertz, C. K. and Joyce, G.: 1975, ‘Numerical Simulation of the Plasma Double Layer’,Astrophys. Space Sci. 32, 165.

    Google Scholar 

  • Gorney, D. J., Clarke, A., Rowley, D., Fennell, J., Luhmann, J., and Mizera, P.: 1981, ‘The Distributions of Ion Beams and Conies Below 8000 km’,J. Geophys. Res. 86, 83.

    Google Scholar 

  • Gurnett, D. A. and Frank, L. A.: 1973, ‘Observed Relationships Between Electric Fields and Auroral Particle Precipitation’,J. Geophys. Res. 78, 145.

    Google Scholar 

  • Gurnett, D. A., Huff, R. L., Menietti, J. D., Burch, J. L., Winningham, J. D., and Shawhan, S. D.: 1984, ‘Correlated Low-Frequency Electric and Magnetic Noise along Auroral Field Lines’,J. Geophys. Res. 89, 8971.

    Google Scholar 

  • Hanson, W. B.: 1965, in F. S. Johnson (ed.), ‘Structure of the Ionosphere’,Satellite Environment Handbook, Stanford University Press, Stanford, p. 23.

    Google Scholar 

  • Harel, M., Wolf, R. A., Reiff, P. H., Spiro, R. W., Burke, W. J., Rich, F. J., and Smiddy, M.: 1981, ‘Quantitative Simulation of a Magnetospheric Substorm, 1, Model Logic and Overview’,J. Geophys. Res. 86, 2217.

    Google Scholar 

  • Hasegawa, A.: 1976, ‘Particle Acceleration by MHD Surface Wave and Formation of Aurora’,J. Geophys. Res. 81, 5083.

    Google Scholar 

  • Hasegawa, A. and Mima, K.: 1978, ‘Anomalous Transport Produced by Kinetic Alfvén Wave Turbulence’,J. Geophys. Res. 83, 1117.

    Google Scholar 

  • Heelis, R. A., Hanson, W. B., and Burch, J. L.: 1976, ‘Ion Convection Velocity Reversals in the Dayside Cleft’,J. Geophys. Res. 81, 3803.

    Google Scholar 

  • Heelis, R. A., Foster, J. C., de la Beaujardiere, O., and Holt, J.: 1983, ‘Multistation Measurements of the High Latitude Ionospheric Convection’,J. Geophys. Res. 88, 10111.

    Google Scholar 

  • Heppner, J. P.: 1972, ‘Polar Cap Electric Field Distributions Related to the Interplanetary Field Direction’,J. Geophys. Res. 77, 4877.

    Google Scholar 

  • Hubbard, R. F. and Joyce, G.: 1979, ‘Simulation of Auroral Double Layers’,J. Geophys. Res. 84, 4297.

    Google Scholar 

  • Hudson, M. K. and Potter, D. W.: 1981, in S.-I. Akasofu and J. R. Kan (eds.), ‘Electrostatic Shocks in the Auroral Magnetosphere’,Physics of Auroral Arc Formation, AGU Geophysical Monograph 25, American Geophysical Union, Washington, p. 260.

    Google Scholar 

  • Hudson, M. K., Lysak, R. L., and Mozer, F. S.: 1978, ‘Magnetic Field Aligned Potential Drops Due to Electrostatic Ion Cyclotron Turbulence’,Geophys. Res. Letters 5, 143.

    Google Scholar 

  • Hudson, M. K., Lotko, W., Roth, I., and Witt, E.: 1983, ‘Solitary Waves and Double Layers on Auroral Field Lines’,J. Geophys. Res. 88, 916.

    Google Scholar 

  • Hughes, W. J.: 1974, ‘The Effect of the Atmosphere and Ionosphere on Long Period Magnetospheric Micropulsations’,Planetary Space Sci. 22, 1157.

    Google Scholar 

  • Iijima, T. and Potemra, T. A.: 1976, ‘The Amplitude Distribution of Field-Aligned Currents at Northern High Latitudes Observed by TRIAD’,J. Geophys. Res. 81, 2165.

    Google Scholar 

  • Inhester, B., Baumjohann, W., Greenwald, R. A., and Nielsen, E.: 1981, ‘Joint Two-Dimensional Observations of Ground Magnetic and Ionospheric Electric Fields Associated with Auroral Zone Currents, 3, Auroral Zone Currents During the Passage of a Westward Traveling Surge’,J. Geophys. 49, 155.

    Google Scholar 

  • Johnstone, A. D. and Winningham, J. D.: 1982, ‘Satellite Observations of Suprathermal Electron Bursts’,J. Geophys. Res. 87, 2321.

    Google Scholar 

  • Kan, J. R. and Lee, L. C.: 1980a, ‘On the Auroral Double Layer Criterion’,J. Geophys. Res. 85, 788.

    Google Scholar 

  • Kan, J. R. and Lee, L. C.: 1980b, ‘Theory of Imperfect Magnetosphere-Ionosphere Coupling’,Geophys. Res. Letters 7, 633.

    Google Scholar 

  • Kan, J. R. and Sun, W.: 1985, ‘Simulation of the Westward Traveling Surge and Pi2 Pulsations During Substorms’,J. Geophys. Res. 90, 10911.

    Google Scholar 

  • Kan, J. R., Longenecker, D. U., and Olson, J. V.: 1982, ‘A Transient Response Model of Pi2 Pulsations’,J. Geophys. Res. 87, 7483.

    Google Scholar 

  • Kan, J. R., Williams, R. L., and Akasofu, S. I.: 1984, ‘A Mechanism for the Westward Traveling Surge During Substorms’,J. Geophys. Res. 89, 2211.

    Google Scholar 

  • Kangas, J., Pikkarainen, T., Golikov, Yu., Baransky, L., Troitskaya, V. A., and Sterlikova, V.: 1979, ‘Bursts of Irregular Magnetic Pulsations During the Substorm’,J. Geophys. 46, 237.

    Google Scholar 

  • Kantrowitz, A. and Petschek, H. E.: 1966, in W. B. Kunkel (ed.), ‘MHD Characteristics and Shock Waves’,Plasma Physics in Theory and Application, McGraw-Hill, New York, p. 148.

    Google Scholar 

  • Kaufmann, R. L., Ludlow, G. R., Collin, H. L., Peterson, W. K., and Burch, J. L.: 1986, ‘Interaction of Upgoing Auroral H+ -O+ Beams’,J. Geophys. Res. 91, 10080.

    Google Scholar 

  • Kichatinov, L. L.: 1985, ‘Renormalization Group Method in Nonlinear Problem of Dynamics of Mean Magnetic Field in a Turbulent Medium’,Magnetohydrodynamics 21, 105.

    Google Scholar 

  • Kindel, J. M. and Kennel, C. F.: 1971, ‘Topside Current Instabilities’,J. Geophys. Res. 76, 3055.

    Google Scholar 

  • Kindel, J. M., Barnes, C., and Forslund, D. W.: 1981, in S.-I. Akasofu and J. R. Kan (eds.), ‘Anomalous DC Resistivity and Double Layers in the Auroral Ionosphere’,Physics of Auroral Arc Formation, AGU Geophysical Monograph 25, American Geophysical Union, Washington, p. 296.

    Google Scholar 

  • Kintner, P. M. and Seyler, C. E.: 1985, ‘The Status of Observations and Theory of High Latitude Ionospheric and Magnetospheric Plasma Turbulence’,Space Sci. Rev. 41, 91.

    Google Scholar 

  • Kintner, P. M., Kelley, M. C., and Mozer, F. S.: 1978, ‘Electrostatic Hydrogen Cyclotron Waves Near One Earth Radius Altitude in the Polar Magnetosphere’,Geophys. Res. Letters 5, 139.

    Google Scholar 

  • Kintner, P. M., Kelley, M. C., Sharp, R. D., Ghielmetti, A. G., Temerin, M., Cattell, C. A., and Mizera, P. F.: 1979, ‘Simultaneous Observations of Energetic (keV) Upstreaming Ions and EHC Waves’,J. Geophys. Res. 84, 7201.

    Google Scholar 

  • Kisabeth, J. L. and Rostoker, G.: 1973, ‘Current Flow in Auroral Loops and Surges Inferred from Ground-Based Magnetic Observations’,J. Geophys. Res. 78, 5573.

    Google Scholar 

  • Knight, S.: 1973, ‘Parallel Electric Fields’,Planetary Space Sci. 21, 741.

    Google Scholar 

  • Knorr, G. and Goertz, C. K.: 1974, ‘Existence and Stability of Strong Potential Double Layers’,Astrophys. Space Sci. 31, 209.

    Google Scholar 

  • Koskinen, H., Boström, R., and Holback, B.: 1988, in T. Chang, G. B. Crew, and J. R. Jasperse (eds.), ‘Viking Observations of Solitary Waves and Weak Double Layers on Auroral Field Lines’,Ionosphere-Magnetosphere-Solar Wind Coupling Processes, Scientific, Cambridge, MA.

    Google Scholar 

  • Kraichnan, R. H. and Montgomery, D.: 1980, ‘Two-Dimensional Turbulence’,Rep. Prog. Phys. 43, 547.

    Google Scholar 

  • LaBelle, J. and Treumann, R. A.: 1988, ‘Plasma Waves at the Dayside Magnetopause’,Space Sci. Rev. 47, 175.

    Google Scholar 

  • Lee, L. C. and Kan, J. R.: 1981, in S.-I. Akasofu and J. R. Kan (eds.),Physics of Auroral Arc Formation, AGU Geophysical Monograph 25, American Geophysical Union, Washington, p. 245.

    Google Scholar 

  • Lemaire, J. and Scherer, M.: 1973, ‘Plasma Sheet Particle Precipitation: a Kinetic Model’,Planetary Space Sci. 21, 281.

    Google Scholar 

  • Lemaire, J. and Scherer, M.: 1974, ‘Ionosphere-Plasma Sheet Field-Aligned Currents and Parallel Electric Fields’,J. Geophys. Res. 22, 1485.

    Google Scholar 

  • Lin, C. S. and Rowland, H. L.: ‘Anomalous Resistivity and AE-D Observations of Auroral Electron Acceleration’,J. Geophys. Res. 90, 4221.

  • Lotko, W.: 1983, ‘Reflection Dissipation of an Ion-Acoustic Soliton’,Phys. Fluids 26, 1771.

    Google Scholar 

  • Lotko, W.: 1986, ‘Diffusive Acceleration of Auroral Primaries’,J. Geophys. Res. 91, 191.

    Google Scholar 

  • Lotko, W. and Kennel, C. F.: 1981, in S.-I. Akasofu and J. R. Kan (eds.), ‘Stationary Electrostatic Waves in the Auroral Plasma’,Physics of Auroral Arc Formation, AGU Geophysical Monograph 25, American Geophysical Union, Washington, p. 437.

    Google Scholar 

  • Lotko, W. and Kennel, C. F.: 1983, ‘Spiky Ion Acoustic Waves in Collisionless Auroral Plasma’,J. Geophys. Res. 88, 381.

    Google Scholar 

  • Lotko, W. and Schulz, C. G.: 1988, in T. E. Moore and J. H. Waite (eds.), ‘Internal Shear Layers in Auroral Dynamics’,Modeling Magnetospheric Plasma, AGU Geophysical Monograph 44, American Geophysical Union, Washington, p. 121.

    Google Scholar 

  • Lotko, W., Sonnerup, B., and Lysak, R. L.: 1987, ‘Nonsteady Boundary Layer Flow Including Ionospheric Drag and Parallel Electric Fields’,J. Geophys. Res. 92, 8635.

    Google Scholar 

  • Lyons, L. R.: 1980, ‘Generation of Large-Scale Regions of Auroral Currents, Electric Potentials, and Precipitation by the Divergence of the Convection Electric Field’,J. Geophys. Res. 85, 17.

    Google Scholar 

  • Lyons, L. R. and Waltersheid, R. L.: 1986, ‘Feedback Between Neutral Winds and Auroral Arc Electrodynamics’,J. Geophys. Res. 91, 13506.

    Google Scholar 

  • Lyons, L. R., Evans, D. S., and Lundin, R.: 1979, ‘An Observed Relation Between Magnetic Field-Aligned Electric Fields and Downward Electron Energy Fluxes in the Vicinity of Auroral Forms’,J. Geophys. Res. 84, 457.

    Google Scholar 

  • Lysak, R. L.: 1985, ‘Auroral Electrodynamics with Current and Voltage Generators’,J. Geophys. Res. 90, 4178.

    Google Scholar 

  • Lysak, R. L.: 1986, ‘Coupling of the Dynamic Ionosphere to Auroral Flux Tubes’,J. Geophys. Res. 91, 7047.

    Google Scholar 

  • Lysak, R. L.: 1988, ‘Theory of Auroral Zone PiB Pulsation Spectra’,J. Geophys. Res. 93, 5942.

    Google Scholar 

  • Lysak, R. L. and Carlson, C. W.: 1981, ‘Effect of Microscopic Turbulence on Magnetosphere-Ionosphere Coupling’,Geophys. Res. Letters 8, 269.

    Google Scholar 

  • Lysak, R. L. and Dum, C. T.: 1983, ‘Dynamics of Magnetosphere-Ionosphere Coupling Including Turbulent Transport’,J. Geophys. Res. 88, 365.

    Google Scholar 

  • Lysak, R. L. and Hudson, M. K.: 1979, ‘Coherent Anomalous Resistivity in the Region of Electrostatic Shocks’,Geophys. Res. Letters 6, 661.

    Google Scholar 

  • Lysak, R. L. and Hudson, M. K.: 1987, ‘Effect of Double Layers on Magnetosphere-Ionosphere Coupling’,Laser and Particle Beams 5, 351.

    Google Scholar 

  • Malinckrodt, A. J. and Carlson, C. W.: 1978, ‘Relations Between Transverse Electric Fields and Field-Aligned Currents’,J. Geophys. Res. 83, 1426.

    Google Scholar 

  • Maltsev, Yu. P., Leontyev, S. V., and Lyatsky, W. B.: 1974, ‘Pi2 Pulsations as a Result of an Alfvén Impulse Originating in the Ionosphere During the Brightening of Aurora’,Planetary Space Sci. 22, 1519.

    Google Scholar 

  • McFadden, J. P., Carlson, C. W., and Boehm, M. H.: 1986, ‘Field-Aligned Electron Precipitation at the Edge of an Arc’,J. Geophys. Res. 91, 1723.

    Google Scholar 

  • McFadden, J. P., Carlson, C. W., Boehm, M. H., and Hallinan, T. J.: 1987, ‘Field-Aligned Electron Flux Oscillations that Produce Flickering Aurora’,J. Geophys. Res. 92, 11133.

    Google Scholar 

  • McIlwain, C. E.: 1960, ‘Direct Measurements of Particles Producing Visible Auroras’,J. Geophys. Res. 65, 2727.

    Google Scholar 

  • Miura, A.: 1984, ‘Anomalous Transport by Magnetohydrodynamic Kelvin-Helmholtz Instabilities in the Solar Wind-Magnetosphere Interaction’,J. Geophys. Res. 89, 801.

    Google Scholar 

  • Miura, A. and Sato, T.: 1980, ‘Numerical Simulation of the Global Formation of Auroral Arcs’,J. Geophys. Res. 85, 73.

    Google Scholar 

  • Mizera, P. F. and Fennell, J. F.: 1977, ‘Signatures of Electric Fields from High and Low Altitude Particle Distributions’,Geophys. Res. Letters 4, 311.

    Google Scholar 

  • Moffatt, H. K.: 1978,Magnetic Field Generation in Electrically Conducting Fluids, Cambridge University Press, Cambridge.

    Google Scholar 

  • Montgomery, D.: 1982, ‘Major Disruptions, Inverse Cascades and the Strauss Equations’,Phys. Scripta 12, 83.

    Google Scholar 

  • Montgomery, D. and Chen, H.: 1984, ‘Turbulent Amplification and Large-Scale Magnetic Fields’,Plasma Phys. Controlled Fusion 26, 1199.

    Google Scholar 

  • Montgomery, D. and Hatori, T.: 1984, ‘Analytical Estimates of Turbulent MHD Transport Coefficients’,Plasma Phys. Controlled Fusion 26, 717.

    Google Scholar 

  • Moses, J. J., Siscoe, G. L., Crooker, N. U., and Gorney, D. J.: 198, ‘IMFB y and Day-Night Conductivity Effects in the Expanding Polar Cap Convection Model’,J. Geophys. Res. 92, 1193.

  • Mozer, F. S.: 1975, in B. M. McCormac (ed.), ‘Anomalous Resistivity and Parallel Electric Fields’,Magnetospheric Particles and Fields, D. Reidel Publ. Co., Dordrecht, Holland, p. 125.

    Google Scholar 

  • Mozer, F. S. and Fahleson, U. V.: 1970, ‘Parallel and Perpendicular Fields in an Aurora’,Planetary Space Sci. 18, 1563.

    Google Scholar 

  • Mozer, F. S., Carlson, C. W., Hudson, M. K., Torbert, R. B., Parady, B., Yatteau, J., and Kelley, M. C.: 1977, ‘Observations of Paired Electrostatic Shocks in the Polar Magnetosphere’,Phys. Rev. Letters 38, 292.

    Google Scholar 

  • Mozer, F. S., Cattell, C. A., Hudson, M. K., Lysak, R. L., Temerin, M., and Torbert, R. B.: 1980, ‘Satellite Measurements and Theories of Auroral Particle Acceleration’,Space Sci. Rev. 27, 155.

    Google Scholar 

  • Newman, A. L., Chiu, Y. T., and Cornwall, J. M.: 1986, ‘Two-Dimensional Quasi-Neutral Description of Particles and Fields Above Discrete Auroral Arcs’,J. Geophys. Res. 91, 3167.

    Google Scholar 

  • Opgenoorth, H. J., Pellinen, R. J., Maurer, H., Kueppers, F., Heikkila, W. J., Kaila, K. U., and Tanskanen, P.: 1980, ‘Ground-Based Observations of an Onset of Localized Field-Aligned Currents During Auroral Breakup Around Magnetic Midnight’,J. Geophys. 48, 101.

    Google Scholar 

  • Opgenoorth, H. J., Pellinen, R. J., Baumjohann, W., Nielsen, E., Marklund, G., and Eliasson, L.: 1983, ‘Three-Dimensional Current Flow and Particle Precipitation in a Westward Traveling Surge (Observed During the Barium-GEOS Rocket Experiment)’,J. Geophys. Res. 88, 3138.

    Google Scholar 

  • Papadopoulos, K.: 1977, ‘A Review of Anomalous Resistivity for the Ionosphere’,Rev. Geophys. Space Phys. 15, 113.

    Google Scholar 

  • Parker, E. N.: 1970, ‘The Generation of Magnetic Fields in Astrophysical Bodies, I, The Dynamo Equations’,Astrophys. J. 162, 665.

    Google Scholar 

  • Pashin, A. B., Glassmeier, K.-H., Baumjohann, W., Raspopov, O. M., Yahnin, A. G., Opgenoorth, H. J., and Pellinen, R. J.: 1982, ‘Pi2 Magnetic Pulsations, Auroral Break-Up and the Substorm Current Wedge: A Case Study’,J. Geophys. 51, 223.

    Google Scholar 

  • Persson, H.: 1963, ‘Electric Field Along a Magnetic Line of Force in a Low-Density Plasma’,Phys. Fluids 6, 1756.

    Google Scholar 

  • Persson, H.: 1966, ‘Electric Field Parallel to the Magnetic Field in a Low-Density Plasma’,Phys. Fluids 9, 1090.

    Google Scholar 

  • Peterson, W. K., Shelley, E. G., Boardsen, S. A., and Gurnett, D. A.: 1986, in T. Changet al. (eds.), ‘Transverse Auroral Ion Energization Observed on DE-1 with Simultaneous Plasma Wave and Ion Composition Measurements’,Ion Acceleration in the Magnetosphere and Ionosphere, AGU Geophysical Monograph 38, American Geophysical Union, Washington, p. 43.

    Google Scholar 

  • Rees, M. H.: 1963, ‘Auroral Ionization and Excitation by Incident Energetic Electrons’,Planetary Space Sci. 11, 1209.

    Google Scholar 

  • Reiff, P. H.: 1984, in T. A. Potemra (ed.), ‘Models of Auroral Zone Conductances’,Magnetospheric Currents, AGU Geophysical Monograph 28, American Geophysical Union, Washington, p. 180.

    Google Scholar 

  • Reiff, P. H., Burch, J. L., and Heelis, R. A.: 1978, ‘Dayside Auroral Arcs and Convection’,Geophys. Res. Letters 5, 391.

    Google Scholar 

  • Reiff, P. H., Collin, H. L., Shelley, E. G., Burch, L. J., and Winningham, J. D.: 1986, in T. Changet al. (eds.),Acceleration in the Magnetosphere and Ionosphere, AGU Geophysical Monograph 38, American Geophysical Union, Washington, p. 83.

    Google Scholar 

  • Rishbeth, H. and Garriott, O. K.: 1969,Introduction to Ionospheric Physics, Academic Press, New York.

    Google Scholar 

  • Rostoker, G. and Samson, J. C.: 1981, ‘Polarization Characteristics of Pi2 Pulsations and Implications for Their Source Mechanisms: Location of the Source Regions with Respect to the Auroral Electrojets’,Planetary Space Sci. 29, 225.

    Google Scholar 

  • Rostoker, G., Vallance Jones, A., Gattinger, R. L., Anger, C. D., and Murphree, J. S.: 1987, ‘The Development of the Substorm Expansive Phase: the “Eye” of the Substorm’,Geophys. Res. Letters 14, 399.

    Google Scholar 

  • Rothwell, P. L., Silevitch, M. B., and Block, L. P.: 1984, ‘A Model for Propagation of the Westward Traveling Surge’,J. Geophys. Res. 89, 8941.

    Google Scholar 

  • Rothwell, P. L., Silevitch, M. B., and Block, L. P.: 1986, ‘Pi2 Pulsations and the Westward Traveling Surge’,J. Geophys. Res. 91, 6921.

    Google Scholar 

  • Rothwell, P. L., Silevitch, M. B., Block, L. P., and Tanskanen, P.: 1988, ‘A Model for the Westward Traveling Surge and the Generation of Pi2 Pulsations’,J. Geophys. Res. 93, 8613.

    Google Scholar 

  • Rowland, H. L. and Palmadesso, P. J.: 1983, ‘Anomalous Resistivity Due to Low-Frequency Turbulence’,J. Geophys. Res. 88, 7997.

    Google Scholar 

  • Rowland, H. L., Palmadesso, P. J., and Papadopoulos, K.: 1981, ‘Anomalous Resistivity on Auroral Field Lines’,J. Geophys. Res. 8, 1257.

    Google Scholar 

  • Russell, C. T. and Elphic, R. C.: 1979, ‘ISEE Observations of Flux Transfer Events at the Magnetopause’,Geophys. Res. Letters 6, 33.

    Google Scholar 

  • Samson, J. C. and Rostoker, G.: 1983, ‘Polarization Characteristics of Pi2 Pulsations and Implications for Their Source Mechanism: Influence of the Westward Traveling Surge’,Planetary Space Sci. 31, 435.

    Google Scholar 

  • Sato, T.: 1978, ‘A Theory of Quiet Auroral Arcs’,J. Geophys. Res. 83, 1042.

    Google Scholar 

  • Sato, T. and Okuda, H.: 1981, ‘Numerical Simulation of Ion Acoustic Double Layers’,J. Geophys. Res. 86, 3357.

    Google Scholar 

  • Schamel, H.: 1972, ‘Stationary Solitary, Snoidal, and Sinusoidal Ion Acoustic Waves’,Plasma Phys. 14, 905.

    Google Scholar 

  • Seyler, C. E.: 1988, ‘Nonlinear 3-d Evolution of Bounded Kinetic Alfvén Waves Due to Shear Flow and Collisionless Tearing Instability’,Geophys. Res. Letters 15, 756.

    Google Scholar 

  • Shawhan, S. D.: 1984, ‘Magnetospheric Plasma Wave Research, 1975–1978’,Rev. Geophys. Space Phys. 17, 705.

    Google Scholar 

  • Song, Y. and Lysak, R. L.: 1988, in T. E. Moore and J. H. Waite (eds.), ‘Turbulent Generation of Auroral Currents and Fields — A Spectral Simulation of 2-d MHD Turbulence’,Modeling Magnetospheric Plasma, AGU Geophysical Monograph 44, American Geophysical Union, Washington, p. 197.

    Google Scholar 

  • Sonnerup, B. U. O.: 1980, ‘Theory of the Low Latitude Boundary Layer’,J. Geophys. Res. 85, 2017.

    Google Scholar 

  • Southwood, D. J. and Hughes, W. J.: 1983, ‘Theory of Hydromagnetic Waves in the Magnetosphere’,Space Sci. Rev. 35, 301.

    Google Scholar 

  • Spiro, R. W., Reiff, P. H., and Maher, L. J.: 1982, ‘Precipitating Electron Energy Flux and Auroral Zone Conductances: An Empirical Model’,J. Geophys. Res. 87, 8215.

    Google Scholar 

  • Strauss, H. R.: 1976, ‘Nonlinear, Three-Dimensional Magnetohydrodynamics of Noncircular Tokamaks’,Phys. Fluids 19, 134.

    Google Scholar 

  • Sugiura, M., Maynard, N. C., Farthing, W. H., Heppner, J. P., Ledley, B. G., and Cahill, L. J.: 1982, ‘Initial Results on the Correlation Between the Electric and Magnetic Fields Observed from the DE 2 Satellite in the Field-Aligned Current Regions’,Geophys. Res. Letters 9, 985.

    Google Scholar 

  • Swift, D. W.: 1975, ‘On the Formation of Auroral Arcs and the Acceleration of Auroral Electrons’,J. Geophys. Res. 80, 2096.

    Google Scholar 

  • Swift, D. W.: 1978, ‘Mechanisms for the Discrete Aurora — A Review’,Space Sci. Rev. 22, 35.

    Google Scholar 

  • Swift, D. W.: 1979, ‘An Equipotential Model for Auroral Arcs: the Theory of Two-Dimensional Laminar Electrostatic Shocks’,J. Geophys. Res. 84, 6427.

    Google Scholar 

  • Temerin, M. and Kintner, P. M.: 1988, ‘Review of Ionospheric Turbulence’,Proc. Chapman Conference on Plasma Waves and Instabilities, Sendai, Japan.

    Google Scholar 

  • Temerin, M., Cattell, C., Lysak, R., Hudson, M., Torbert, R. B., Mozer, F. S., Sharp, R. D., and Kintner, P. M.: 1981, ‘The Small-Scale Structure of Electrostatic Shocks’,J. Geophys. Res. 86, 11278.

    Google Scholar 

  • Temerin, M., Cerny, K., Lotko, W., and Mozer, F. S.: 1982, ‘Observations of Double Layers and Solitary Waves on Auroral Zone Field Lines’,Phys. Rev. Letters 48, 1175.

    Google Scholar 

  • Tetreault, D. J.: 1988, ‘Growing Ion Holes as the Cause of Auroral Double Layers’,Geophys. Res. Letters 15, 164.

    Google Scholar 

  • Untiedt, J., Pellinen, R., Kueppers, F., Opgenoorth, H. J., Pelster, W. D., Baumjohann, W., Ranta, H., Kangas, J., Czechowsky, P., and Heikkila, W. J.: 1978, ‘Observations of the Initial Development of an Auroral and Magnetic Substorm at Magnetic Midnight’,J. Geophys. 45, 41.

    Google Scholar 

  • Vasyliunas, V. M.: 1970, in B. McCormac (ed.), ‘Mathematical Models of Magnetospheric Convection and Its Coupling to the Ionosphere’,Particles and Fields in the Magnetosphere, D. Reidel Publ. Co., Dordrecht, Holland, p. 29.

    Google Scholar 

  • Vickrey, J. F., Livingston, R. C., Walker, N. B., Potemra, T. A., Heelis, R. A., Kelley, M. C., and Rich, F. J.: 1986, ‘On the Current-Voltage Relationship of the Magnetospheric Generator at Intermediate Spatial Scales’,Geophys. Res. Letters 13, 495.

    Google Scholar 

  • Vickrey, J. F., Vondrak, R. R., and Matthews, S. J.: 1981, ‘The Diurnal and Latitudinal Variation of Auroral Zone Ionospheric Conductivity’,J. Geophys. Res. 86, 65.

    Google Scholar 

  • Wallis, D. D. and Budzinski, E. E.: 1981, ‘Empirical Models of Height-Integrated Conductivities’,J. Geophys. Res. 86, 125.

    Google Scholar 

  • Watanabe, K. and Sato, T.: 1988, ‘Self-Excitation of Auroral Arcs in a Three-Dimensionally Coupled Magnetosphere-Ionosphere System’,Geophys. Res. Letters 15, 717.

    Google Scholar 

  • Weimer, D. R., Goertz, C. K., Gurnett, D. A., Maynard, N. C., and Burch, J. L.: ‘Auroral Zone Electric Fields from DE 1 and 2 at Magnetic Conjunctions’,J. Geophys. Res. 90, 7479.

  • Whalen, B. A. and Daly, P. W.: 1979, ‘Do Field-Aligned Auroral Particle Distributions Imply Acceleration by Quasi-Static Parallel Electric Fields?’,J. Geophys. Res. 84, 4175.

    Google Scholar 

  • Whipple, E. C.: 1977, ‘The Signature of Parallel Electric Fields in a Collisionless Plasma’,J. Geophys. Res. 82, 1525.

    Google Scholar 

  • Wilhelm, K., Bernstein, W., Kellogg, P. J., and Whalen, B. A.: 1985, ‘Fast Magnetospheric Echoes of Energetic Electron Beams’,J. Geophys. Res. 90, 491.

    Google Scholar 

  • Witt, E. and Lotko, W.: 1983, ‘Ion-Acoustic Solitary Waves in a Magnetized Plasma with Arbitrary Electron Equation State’,Phys. Fluids 26, 2176.

    Google Scholar 

  • Witt, E. and Hudson, M. K.: 1986, ‘Electrostatic Shocks as Nonlinear Ion Acoustic Waves’,J. Geophys. Res. 91, 11217.

    Google Scholar 

  • Wolf, R. A. and Spiro, R. W.: 1985, in H. Matsumoto and T. Sato (eds.), ‘Particle Behavior in the Magnetosphere’,Computer Simulation of Space Plasmas, Terra Scientific, Tokyo, p. 227.

    Google Scholar 

  • Wu, C. S. and Lee, L. C.: 1979, ‘A Theory of Terrestrial Kilometric Radiation’,Astrophys. J. 230, 621.

    Google Scholar 

  • Yasuhara, F., Greenwald, R., and Akasofu, S.-I.: 1983, ‘On the Rotation of the Polar Cap Potential Pattern and Associated Polar Phenomena’,J. Geophys. Res. 88, 5773.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lysak, R.L. Electrodynamic coupling of the magnetosphere and ionosphere. Space Sci Rev 52, 33–87 (1990). https://doi.org/10.1007/BF00704239

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00704239

Keywords

Navigation