Skip to main content
Log in

Preservice Biology Teachers’ Conceptions About the Tentative Nature of Theories and Models in Biology

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

In research on the nature of science, there is a need to investigate the role and status of different scientific knowledge forms. Theories and models are two of the most important knowledge forms within biology and are the focus of this study. During interviews, preservice biology teachers (N = 10) were asked about their understanding of theories and models. They were requested to give reasons why they see theories and models as either tentative or certain constructs. Their conceptions were then compared to philosophers’ positions (e.g., Popper, Giere). A category system was developed from the qualitative content analysis of the interviews. These categories include 16 conceptions for theories (n tentative = 11; n certain  = 5) and 18 conceptions for models (n tentative = 10; n certain = 8). The analysis of the interviews showed that the preservice teachers gave reasons for the tentativeness or certainty of theories and models either due to their understanding of the terms or due to their understanding of the generation or evaluation of theories and models. Therefore, a variety of different terminology, from different sources, should be used in learning-teaching situations. Additionally, an understanding of which processes lead to the generation, evaluation, and refinement or rejection of theories and models should be discussed with preservice teachers. Within philosophy of science, there has been a shift from theories to models. This should be transferred to educational contexts by firstly highlighting the role of models and also their connections to theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A detailed account of the historical development of models and theories in philosophical discussions can be found in Bailer-Jones (2009).

  2. A detailed discussion about the integration of NOS in Shulmans’ classification can be found in van Dijk (2014).

  3. Interviews were conducted in German. Both Wissen and Erkenntnis can be translated as “knowledge.” Following Vollmer (1975a), Erkenntnis includes a process (cognition) and a result (Wissen).

  4. In the running text, philosophical conceptions are marked with an asterisk to allow easier differentiation between them and preservice teachers’ conceptions.

  5. Kuhn (1962/2012), representing one of the most prominent (historicist) views on science, is radically opposed to Poppers’ methodological approach highlighting scientists’ as well as even science policy’s role for the continuance of so called paradigms (including theories). Since a more moderate view about the role of scientists and science community is also taken up by Lakatos, Kuhn’s view is not included here.

References

  • Adúriz-Bravo, A. (2012). A ‘semantic’ view of scientific models for science education. Science & Education, 22, 1593–1611.

    Article  Google Scholar 

  • Bacon, F. (1620/1990). Neues Organon, Teilband I. Herausgegeben und mit einer Einleitung von Wolfgang Krohn. Lateinisch - Deutsch [Novum Organum, Volume I. Edited from and with an introduction of Wolfgang Krohn. Latin - German]. Hamburg: Felix Meiner.

  • Bailer-Jones, D. M. (1999). Tracing the development of models in the philosophy of science. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 23–40). Boston: Springer.

  • Bailer-Jones, D. M. (2002). Naturwissenschaftliche Modelle: von Epistemologie zu Ontologie [Scientific models: from epistemology to ontology]. In A. Beckermann & C. Nimtz (Eds.), Argument und analyse. Sektionsvorträge (pp. 1–11). Paderborn: Mentis.

  • Bailer-Jones, D. M. (2004). Realist-Sein im Blick auf naturwissenschaftliche Modelle [Being a realist with regard to scientific models]. In C. Halbig & C. Suhm (Eds.), Was ist wirklich? Neuere Beiträge zu Realismusdebatten in der Philosophie (pp. 201–221). Frankfurt: Ontos.

    Google Scholar 

  • Bailer-Jones, D. M. (2009). Scientific models in philosophy of science. Pittsburgh, PA: University of Pittsburgh.

    Book  Google Scholar 

  • Bailer-Jones, D. M., & Hartmann, S. (1999). Modell [Model]. In H.-J. Sandkühler (Ed.), Enzyklopädie Philosophie (pp. 854–859). Hamburg: Felix Meiner.

    Google Scholar 

  • Bell, R. L. (2009). Teaching the nature of science: three critical questions. Best Practices in Science Education, 15. Retrieved from http://ngl.cengage.com/assets/downloads/ngsci_pro0000000028/am_bell_teach_nat_sci_scl22-0449a_pdf

  • Bortz, J., & Döring, N. (2006). Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler [Research methods and evaluation for social scientists]. Heidelberg: Springer.

  • Bybee, R. W. (2002). Scientific literacy - Mythos oder Realität? [Scientific literacy - myth or reality?]. In W. Gräber, P. Nentwig, T. Koballa, & R. Evans (Eds.), Scientific literacy (pp. 21–43). Wiesbaden: Verlag für Sozialwissenschaften.

  • Carnap, R. (1939). Foundations of logic and mathematics. Chicago, IL: University of Chicago.

    Google Scholar 

  • Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35, 623–654.

    Article  Google Scholar 

  • Clough, M. (2011). The story behind the science: bringing science and scientists to life in post-secondary science education. Science & Education, 20, 701–717.

    Article  Google Scholar 

  • Dagher, Z. R., Brickhouse, N. W., Shipman, H., & Letts, W. J. (2004). How some college students represent their understandings of the nature of scientific theories. International Journal of Science Education, 26, 735–755.

    Article  Google Scholar 

  • Dagher, Z. R., & Erduran, S. (2014). Laws and explanations in biology and chemistry: philosophical perspectives and educational implications. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1203–1233). Dordrecht: Springer.

    Google Scholar 

  • Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., & Parchmann, I. (2012). The model of educational reconstruction - a framework for improving teaching and learning science. In D. Jorde & J. Dillon (Eds.), Science education research and practice in Europe (pp. 13–37). Rotterdam: Sense.

  • Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85, 554–567.

    Article  Google Scholar 

  • Erduran, S. (2014). Beyond nature of science: the case for reconceptualising ‘science’ for science education. Science Education International, 25, 93–111.

    Google Scholar 

  • Erduran, S., & Dagher, Z. R. (2014). Reconceptualizing the nature of science for science education. Scientific knowledge, practices and other family categories. Dordrecht: Springer.

    Google Scholar 

  • Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: verbal reports as data. Cambridge: MIT.

    Google Scholar 

  • Giere, R. N. (1988). Explaining science. A cognitive approach. Chicago, IL: University of Chicago.

    Book  Google Scholar 

  • Giere, R. N. (1999). Using models to represent reality. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery. Proceedings of an international conference on model-based reasoning in scientific discovery, held December 17–19, 1998, in Pavia, Italy (pp. 41–57). New York: Kluwer Academic/Plenum.

    Google Scholar 

  • Giere, R. N. (2001). A new framework for teaching scientific reasoning. Argumentation, 15, 21–33.

    Article  Google Scholar 

  • Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71, 42–752.

    Article  Google Scholar 

  • Giere, R. N., Bickle, J., & Mauldin, R. F. (2006). Understanding scientific reasoning. Belmont: Thomson/Wadsworth.

    Google Scholar 

  • Gropengießer, H. (2001). Didaktische Rekonstruktion des Sehens. In Wissenschaftliche Theorien und die Sicht der Schüler in der Perspektive der Vermittlung [Educational reconstruction of the process of seing, Scientific theories and the view of students under the perspective of teaching]. Oldenburg: Didaktisches Zentrum.

    Google Scholar 

  • Gropengießer, H. (2010). Qualitative Inhaltsanalyse in der fachdidaktischen Lehr-Lernforschung [Qualitative content analysis within subject-didactic teaching and learning research]. In P. Mayring & M. Gläser-Zikuda (Eds.), Die Praxis der qualitativen Inhaltsanalyse (pp. 172–189). Weinheim: Beltz.

    Google Scholar 

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799–822.

    Article  Google Scholar 

  • Grossman, P. L. (1990). The making of a teacher: teacher knowledge and teacher education. New York: Teachers College.

    Google Scholar 

  • Hodson, D. (2014). Learning science, learning about science, doing science: different goals demand different learning methods. International Journal of Science Education, 36, 2534–2553.

    Article  Google Scholar 

  • Hodson, D., & Wong, S. L. (2014). From the horse’s mouth: why scientists’ views are crucial to nature of science understanding. International Journal of Science Education, 36, 2639–2665.

    Article  Google Scholar 

  • Hoyningen-Huene, P. (2013). Systematicity: the nature of science. New York: Oxford University.

    Book  Google Scholar 

  • Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20, 591–607.

    Article  Google Scholar 

  • Irzik, G., & Nola, R. (2014). New directions for nature of science research. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 999–1021). Dordrecht: Springer.

    Google Scholar 

  • Justi, R., & Gilbert, J. (2003). Teachers’ views on the nature of models. International Journal of Science Education, 25, 1369–1386.

    Article  Google Scholar 

  • Kattmann, U., Duit, R., Gropengießer, H., & Komorek, H. (1997). Das Modell der Didaktischen Rekonstruktion - Ein Rahmen für naturwissenschaftsdidaktische Forschung und Entwicklung [The model of educational reconstruction - a framework for science education research and development]. Zeitschrift für Didaktik der Naturwissenschaften, 3, 3–18.

  • KMK [Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der BRD] (2005). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss. [Biology education standards for the Mittlere Schulabschluss]. München: Wolters Kluwer Deutschland. Retrieved from http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2004/2004_12_16-Bildungsstandards-Biologie.pdf.

    Google Scholar 

  • KMK (2014). Ländergemeinsame inhaltliche Anforderungen für die Fachwissenschaften und Fachdidaktiken in der Lehrerbildung [Common requirements with regards to content for subject disciplines and didactics within teacher education]. Berlin: Author. Retrieved from http://www.akkreditierungsrat.de/fileadmin/Seiteninhalte/KMK/Vorgaben/KMK_Lehrerbildung_inhaltliche_Anforderungen_aktuell.pdf.

    Google Scholar 

  • Kohlhauf, L., Rutke, U., & Neuhaus, B. (2011). Influence of previous knowledge, language skills and domain-specific interest on observation competency. Journal of Science Education and Technology, 20, 667–678.

    Article  Google Scholar 

  • Krell, M., & Krüger, D. (2016). Testing models: A key aspect to promote teaching activities related to models and modelling in biology lessons? Journal of Biological Education, 50, 160–173.

  • Krell, M., Reinisch, B., & Krüger, D. (2015). Analyzing students’ understanding of models and modeling referring to the disciplines biology, chemistry, and physics. Research in Science Education, 45, 367–393.

  • Kuhn, T. (1962/2012). The structure of scientific revolutions. Chicago, IL: University of Chicago.

  • Lakatos, I. (1977/1982). Die Methodologie der wissenschaftlichen Forschungsprogramme [The methodology of scientific research programmes]. Braunschweig: Friedr. Vieweg & Sohn.

  • Lauth, B., & Sareiter, J. (2005). Wissenschaftliche Erkenntnis. Eine ideengeschichtliche Einführung in die Wissenschaftstheorie [Scientific cognition. Introduction in science philosophy in terms of the history of ideas]. Paderborn: Mentis.

    Google Scholar 

  • Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: a review of the research. Journal of Research in Science Teaching, 29, 331–359.

    Article  Google Scholar 

  • Lederman, N. G. (2007). Nature of science: past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–880). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lederman, N. G., Abd-el-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire. Toward valid and meaningful assessment of learners’ conceptions of nature of scienc. Journal of Research in Science Teaching, 39, 497–521.

    Article  Google Scholar 

  • Lederman, N. G., & Lederman, J. S. (2014). Research on teaching and learning of nature of science. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education, volume II (pp. 600–620). New York: Routledge.

    Google Scholar 

  • Liang, L. L., Chen, S., Chen, X., Kaya, O. N., Adams, A. D., Macklin, M., & Ebenezer, J. (2009). Preservice teachers’ views about nature of scientific knowledge development: an international collaborative study. International Journal of Science and Mathematics Education, 7, 987–1012.

    Article  Google Scholar 

  • Mahr, B. (2012). On the epistemology of models. In G. Abel & J. Conant (Eds.), Rethinking epistemology (pp. 301–352). Berlin: Walter de Gruyter.

    Google Scholar 

  • Matthews, M. R. (2012). Changing the focus: from nature of science (NOS) to features of science (FOS). In M. S. Khine (Ed.), Advances in nature of science research. Concepts and methodologies (pp. 3–26). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mayring, P. (2000). Qualitative inhaltsanalyse [Qualitative content analysis]. Forum Qualitative Sozialforschung, 1, 28 para. Retrieved from http://nbn-resolving.de/urn:nbn:de:0114-fqs0002204

  • Mayring, P. (2002). Qualitative content analysis - research instrument or mode of interpretation? In M. Kiegelmann (Ed.), The role of the researcher in qualitative psychology (pp. 139–148). Tübingen: Ingeborg Huber.

  • McClure, J. R., Sonak, B., & Suen, H. K. (1999). Concept map assessment of classroom learning: reliability, validity, and logistical practicality. Journal of Research in Science Teaching, 36, 475–492.

    Article  Google Scholar 

  • McComas, W. F. (2002). The principal elements of the nature of science: dispelling the myths. In W. F. McComas (Ed.), The nature of science in science education. Rationales and strategies (pp. 53–70). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • McComas, W. F., & Olson, J. K. (2002). The nature of science in international science education standards documents. In W. F. McComas (Ed.), The nature of science in science education. Rationales and strategies (pp. 41–52). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Mikelskis-Seifert, S., & Fischler, H. (2003). Die Bedeutung des Denkens in Modellen bei der Entwicklung von Teilchenvorstellungen - Stand der Forschung und Entwurf einer Unterrichtskonzeption [On the role of thinking in terms of models when developing particle ideas – State of research and a draft of an instructional approach]. Zeitschrift für Didaktik der Naturwissenschaften, 9, 75–88.

  • NGSS Lead States (2013). Next generation science standards: for states, by states. Washington, DC: National Academy.

  • Niebert, K., & Gropengießer, H. (2014). Leitfadengestützte Interviews [Guideline based interviews]. In D. Krüger, I. Parchmann, & H. Schecker (Eds.), Methoden in der naturwissenschaftsdidaktischen Forschung (pp. 121–132). Berlin: Springer.

    Chapter  Google Scholar 

  • Novak, J. D., & Cañas, A. J. (2006). The theory underlying concept maps and how to construct them: technical Report IHMC CmapTools 2006–01. Retrieved from http://cmap.ihmc.us/docs/pdf/TheoryUnderlyingConceptMaps.pdf.

  • Nuzzo, A. (1999). Theorie [Theory]. In H. J. Sandkühler, D. Pätzold, A. Regenbogen, & P. Stekeler-Weithofer (Eds.), Enzyklopädie Philosophie (1620b-1624b). Hamburg: Felix Meiner.

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40, 692–720.

    Article  Google Scholar 

  • Passmore, C., Svoboda Gouvea, J., & Giere, R. N. (2014). Models in science and in learning science: focusing scientific practice on sense-making. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1171–1202). Dordrecht: Springer.

    Google Scholar 

  • Popper, K. R. (1934/1971). Logik der Forschung [The logic of scientific discovery]. Tübingen: J. C. B. Mohr.

  • Reichenbach, H. (1930a). Die philosophische Bedeutung der modernen Physik [The philosophical meaning of modern physics]. Erkenntnis, 1, 49–71.

    Article  Google Scholar 

  • Reichenbach, H. (1930b). Kausalität und Wahrscheinlichkeit [Causality and probability]. Erkenntnis, 1, 158–188.

    Article  Google Scholar 

  • Reinisch, B., & Krüger, D. (2014). Vorstellungen von Studierenden über Gesetze, Theorien und Modelle in der Biologie [Conceptions of pre-service teachers about laws, theories, and models in biology]. Erkenntnisweg Biologiedidaktik, 13, 41–56.

  • Reutlinger, A., Schurz, G., & Hüttemann, A. (2014). Ceteris Paribus laws. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Stanford: Stanford University. Retrieved from http://plato.stanford.edu/archives/spr2014/entries/ceteris-paribus/.

    Google Scholar 

  • Rosenberg, A. (2008). Biology. In S. Psillos & M. Curd (Eds.), Routledge philosophy companions. The Routledge companion to philosophy of science (pp. 511–519). London: Routledge.

    Google Scholar 

  • Samarapungavan, A., Westby, E. L., & Bodner, G. M. (2006). Contextual epistemic development in science: a comparison of chemistry students and research chemists. Science Education, 90, 468–495.

    Article  Google Scholar 

  • Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89, 634–656.

    Article  Google Scholar 

  • Schatzman, L., & Strauss, A. L. (1973). Field research. Strategies for a natural sociology. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Schmidt, C. (2010). Auswertungstechniken für Leitfadeninterviews [Analysing technique for guided interviews]. In B. Friebertshäuser, A. Langer, & A. Prengel (Eds.), Handbuch qualitative Forschungsmethoden in der Erziehungswissenschaft (pp. 473–486). Weinheim: Juventa.

    Google Scholar 

  • Schreier, M. (2014). Varianten qualitativer Inhaltsanalyse: Ein Wegweiser im Dickicht der Begrifflichkeiten [Ways of doing qualitative content analysis: disentangling terms and terminologies]. Forum Qualitative Sozialforschung, 15, 59 para. Retrieved from http://nbn-resolving.de/urn:nbn:de:0114-fqs1401185

  • Schwartz, R. S., Lederman, N. G., & Abd-el-Khalick, F. (2012). A series of misrepresentations: a response to Allchin’s whole approach to assessing nature of science understandings. Science Education, 96, 685–692.

    Article  Google Scholar 

  • Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15, 4–14.

    Article  Google Scholar 

  • Shulman, L. S. (1987). Knowledge and teaching: foundations of the new reform. Harvard Educational Review, 57, 1–22.

    Article  Google Scholar 

  • Tracy, S. (2013). Qualitative research methods: collecting evidence, crafting analysis, communicating impact. Chichester: Wiley-Blackwell.

    Google Scholar 

  • van Dijk, E. M. (2013). Paul Hoyningen-Huene: systematicity: the nature of science. Science & Education, 22, 2369–2373.

    Article  Google Scholar 

  • van Dijk, E. M. (2014). Understanding the heterogeneous nature of science: a comprehensive notion of PCK for scientific literacy. Science Education, 98, 397–411.

    Article  Google Scholar 

  • Vollmer, G. (1975a). Evolutionäre erkenntnistheorie: angeborene erkenntnisstrukturen im kontext von biologie, psychologie, linguistik, philosophie und wissenschaftstheorie [Evolutionary theory of knowledge: innate cognition structures in the context of biology, psychology, linguistic, philosophy, and philosophy of science]. Stuttgart: S. Hirzel.

  • Vollmer, G. (1975b). Was können wir wissen? Die Erkenntnis der Natur. [What can we know? The cognition of nature]. Stuttgart: S. Hirzel.

    Google Scholar 

  • Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), Educational psychology handbook series. International handbook of research on conceptual change (pp. 3–34). New York: Routledge.

    Google Scholar 

  • Wiltsche, H. A. (2013). Einführung in die Wissenschaftstheorie [Introduction to the philosophy of science]. Göttingen: Vandenhoeck & Ruprecht.

  • Windschitl, M., Thompson, J., & Braaten, M. (2008). How novice science teachers appropriate epistemic discourses around model-based inquiry for use in classrooms. Cognition and Instruction, 26, 310–378.

    Article  Google Scholar 

  • Wong, S. L., & Hodson, D. (2009). From the horse’s mouth: what scientists say about scientific investigation and scientific knowledge. Science Education, 93, 109–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Reinisch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinisch, B., Krüger, D. Preservice Biology Teachers’ Conceptions About the Tentative Nature of Theories and Models in Biology. Res Sci Educ 48, 71–103 (2018). https://doi.org/10.1007/s11165-016-9559-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-016-9559-1

Keywords

Navigation