Skip to main content
Log in

Genetic Diversity, Population Structure and Construction of a Core Collection of Apple Cultivars from Italian Germplasm

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Apple germplasm collections are increasingly appreciated as a repository for the genetic improvement of species, and their evaluation is an essential prerequisite for their utilization in apple breeding. A set of 418 apple genotypes, including 383 accessions from the Italian germplasm and 35 International cultivars as reference, was analyzed using 15 SSRs with the aim of assessing the genetic diversity within this panel of varieties, evaluating relationships among them and determining their genetic structure. Genetic analyses performed by Bayesian model-based clustering revealed a clear differentiation of two major groups (G1 and G2). Local Italian accessions were grouped mainly in G2 while all except one of the reference cultivars were found in G1. Each of these two clusters has been further divided into two subgroups by a nested approach. These results were confirmed by factorial correspondence (FCA) and molecular variance (AMOVA) analyses. A core collection of 55 accessions, representative of the Italian apple germplasm and capable of retaining all the 238 SSR alleles detected on 192 unique genotypes, was established by the M-strategy method. The Italian apple germplasm represents an important source of genetic diversity which can be used, in addition to other characterized European germplasm collections, to optimize the efficiency of genome-wide association studies aimed at identifying the genomic regions controlling major horticultural traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adami M, De Franceschi P, Brandi F, Liverani A, Giovannini D, Rosati C, Dondini L, Tartarini S (2013) Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Mol Biol Rep 31:1166–1175

    Article  CAS  Google Scholar 

  • Aranzana MJ, Abbassi E-K, Howad W, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69

    Article  PubMed Central  PubMed  Google Scholar 

  • Barnaud A, Lacombe T, Doligez A (2006) Linkage disequilibrium in cultivated grapevine, Vitis vinifera L. Theor Appl Genet 112:708–716

    Article  CAS  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, Université de Montpellier II, Montpellier

    Google Scholar 

  • Bengtsson BO, Weibull P, Ghatnekar L (1995) The loss of alleles by sampling: a study of the common outbreeding grass Festuca ovina over three geographic scales. Hereditas 122:221–238

    Article  Google Scholar 

  • Berg EE, Hamrick J (1997) Quantification of genetic diversity at allozyme loci. Can J For Res 27:415–424

    Article  CAS  Google Scholar 

  • Breton C, Pinatel C, Médail F, Bonhomme F, Bervillé A (2008) Comparison between classical and Bayesian methods to investigate the history of olive cultivars using SSR-polymorphisms. Plant Sci 175:524–532

    Article  CAS  Google Scholar 

  • Brooks RM, Olmo HP (1997) Register of fruit & nut varieties. ASHS, Alexandria

    Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Article  Google Scholar 

  • Brown AHD (1995) The core collection at the crossroads. In: Hodgkin T, Brown AHD, van Hintum TJL, Morales EAV (eds) Core collections of plant genetic resources. Wiley , Chichester, pp 3–19

    Google Scholar 

  • Bruford MW, Ciofi C, Funk SM (1998) Characteristics of microsatellites. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity: plants and animals. Chapman & Hall, London, pp 202–205

    Chapter  Google Scholar 

  • Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays 28:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Celton J-M, Tustin DS, Chagné D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107

    Article  Google Scholar 

  • Coart E, Vekemans X, Smulders MJ, Wagner I, Van Huylenbroeck J, Van Bockstaele E, Roldán-Ruiz I (2003) Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol Ecol 12:845–857

    Article  CAS  PubMed  Google Scholar 

  • Cohen JI, Alcorn JB, Potter CS (1991) Utilization and conservation of genetic resources: international projects for sustainable agriculture. Econ Bot 45:190–199

    Article  Google Scholar 

  • Cornille A, Gladieux P, Smulders MJ, Roldán-Ruiz I, Laurens F, Le Cam B, Nersesyan A, Clavel J, Olonova M, Feugey L, Gabrielyan I, Zhang XG, Tenaillon MI, Giraud T (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8(5):e1002703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Csencsics D, Brodbeck S, Holderegger R (2010) Cost-effective, species-specific microsatellite development for the endangered Dwarf Bulrush (Typha minima) using next-generation sequencing technology. J Hered 101:789–793

    Article  CAS  PubMed  Google Scholar 

  • De Franceschi P, Dondini L, Sanzol J (2012) Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). J Exp Bot 63(11):4015–4032

    Article  PubMed  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dunemann F, Ulrich D, Malysheva-Otto L, Weber WE, Longhi S, Velasco R, Costa F (2012) Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivars. Mol Breeding 29(3):609–625

    Article  CAS  Google Scholar 

  • Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol 11:17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Escribano P, Viruel MA, Hormaza JI (2008) Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Ann Appl Biol 153:25–32

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2006) ARLEQUIN Version 3.01. An integrated software package for population genetics data analysis. Computational and Molecular Population Genetics Lab, Institute of Zoology, University of Berne

  • Felsenstein J (1989) PHYLIP 3.2 manual. University of California Herbarium, Berkeley

    Google Scholar 

  • Ferreira dos Santos AR, Ramos-Cabrer AM, Díaz-Hernández MB, Pereira-Lorenzo S (2011) Genetic variability and diversification process in local pear cultivars from northwestern Spain using microsatellites. Tree Genet Genomes 7:1041–1056

    Article  Google Scholar 

  • Franco J, Crossa J, Warburton ML, Taba S (2006) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci 46:854–864

    Article  Google Scholar 

  • Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber W, Illmensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, pp 161–170

    Google Scholar 

  • Garkava-Gustavsson L, Kolodinska Brantestam A, Sehic J, Nybom H (2008) Molecular characterisation of indigenous Swedish apple cultivars based on SSR and S-allele analysis. Hereditas 145:99–112

    Article  CAS  PubMed  Google Scholar 

  • Gasi F, Simon S, Pojskic N, Kurtovic M, Pejic I (2010) Genetic assessment of apple germplasm in Bosnia and Herzegovina using microsatellite and morphologic markers. Sci Hortic 126:164–171

    Article  Google Scholar 

  • Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56:829–842

    Article  CAS  Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94

    Article  CAS  PubMed  Google Scholar 

  • Grenier C, Deu M, Kresovich S, Bramel-Cox PJ, Hamon P (2000) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures: B. Using molecular markers. Theor Appl Genet 101:197–202

    Article  CAS  Google Scholar 

  • Guarino C, Santoro S, De Simone L, Lain O, Cipriani G, Testolin R (2006) Genetic diversity in a collection of ancient cultivars of apple (Malus × domestica Borkh.) as revealed by SSR-based fingerprinting. J Hortic Sci Biotechnol 81:39–44

    CAS  Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Article  Google Scholar 

  • Han Y, Korban SS (2008) An overview of the apple genome through BAC end sequence analysis. Plant Mol Biol 67:581–588

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breeding 21:271–281

    Article  CAS  Google Scholar 

  • Hokanson SC, Lamboy WF, Szewc-McFadden AK, McFerson JR (2001) Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica 118:281–294

    Article  CAS  Google Scholar 

  • Horvath A, Balsemin E, Barbot J-C, Christmann H, Manzano G, Reynet P, Laigret F, Mariette S (2011) Phenotypic variability and genetic structure in plum (Prunus domestica L.), cherry plum (P. cerasifera Ehrh.) and sloe (P. spinosa L.). Sci Hortic 129:283–293

    Article  CAS  Google Scholar 

  • Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York, pp 1–17

    Chapter  Google Scholar 

  • Iketani H, Yamamoto T, Katayama H, Uematsu C, Mase N, Sato Y (2010) Introgression between native and prehistorically naturalized (archaeophytic) wild pear (Pyrus spp.) populations in Northern Tohoku, Northeast Japan. Conserv Genet 11:115–126

    Article  Google Scholar 

  • Jacobs MM, Smulders MJ, van den Berg RG, Vosman B (2011) What’s in a name; Genetic structure in Solanum section Petota studied using population-genetic tools. BMC Evol Biol 11:42

    Article  PubMed Central  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Janick J, Moore JN (1996) Fruit breeding. Volume I: tree and tropical fruits. Wiley, New York

    Google Scholar 

  • Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose M, Ellis TN, Flavell A (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18:30–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larsen AS, Asmussen CB, Coart E, Olrik DC, Kjær ED (2006) Hybridization and genetic variation in Danish populations of European crab apple (Malus sylvestris). Tree Genet Genomes 2:86–97

    Article  Google Scholar 

  • Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon A-F, Boursiquot J-M, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol 8:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Lepais O, Bacles CF (2011) Comparison of random and SSR–enriched shotgun pyrosequencing for microsatellite discovery and single multiplex PCR optimization in Acacia harpophylla F. Muell. Ex Benth. Mol Ecol Resour 11:711–724

    Article  PubMed  Google Scholar 

  • Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data Version 1.0.

  • Lia VV, Poggio L, Confalonieri VA (2009) Microsatellite variation in maize landraces from Northwestern Argentina: genetic diversity, population structure and racial affiliations. Theor Appl Genet 119:1053–1067

    Article  CAS  PubMed  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breeding 10:217–241

    Article  CAS  Google Scholar 

  • Maguire TL, Collins GG, Sedgley M (1994) A modified CTAB DNA extraction procedure for plants belonging to the family Proteaceae. Plant Mol Biol Rep 12:106–109

    Article  CAS  Google Scholar 

  • Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77

    Article  PubMed Central  PubMed  Google Scholar 

  • Marra FP, Caruso T, Costa F, Di Vaio C, Mafrica R, Marchese A (2013) Genetic relationships, structure and parentage simulation among the olive tree (Olea europaea L. subsp. europaea) cultivated in Southern Italy revealed by SSR markers. Tree Genet Genomes 1–13

  • Miranda C, Urrestarazu J, Santesteban LG, Royo JB, Urbina V (2010) Genetic diversity and structure in a collection of ancient Spanish pear cultivars assessed by microsatellite markers. J Amer Soc Hortic Sci 135:428–437

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Feldman MW (1972) Identity of genes by descent within and between populations under mutation and migration pressures. Theor Popul Biol 3:460–465

    Article  CAS  PubMed  Google Scholar 

  • Noiton DA, Alspach PA (1996) Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J Am Soc Hortic Sci 121:773–782

    Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  CAS  PubMed  Google Scholar 

  • Patzak J, Paprštein F, Henychová A, Sedlák J (2012) Genetic diversity of Czech apple cultivars inferred from microsatellite markers analysis. Hortic Sci (Prague) 39:149–157

    Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Díaz-Hernández MB (2007) Evaluation of genetic identity and variation of local apple cultivars (Malus × domestica Borkh.) from Spain using microsatellite markers. Genet Resour Crop Evol 54:405–420

    Article  CAS  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Gonzalez-Diaz AJ, Diaz-Hernandez MB (2008) Genetic assessment of local apple cultivars from La Palma, Spain, using simple sequence repeats (SSRs). Sci Hortic 117:160–166

    Article  CAS  Google Scholar 

  • Pereira-Lorenzo S, Costa RML, Ramos-Cabrer AM, Ribeiro CAM, da Silva MFS, Manzano G, Barreneche T (2010) Variation in grafted European chestnut and hybrids by microsatellites reveals two main origins in the Iberian Peninsula. Tree Genet Genomes 6:701–715

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet J (2006) DARwin software http://darwin.cirad.fr/

  • Pineda-Krch M, Lehtilä K (2004) Challenging the genetically homogeneous individual. J Evol Biol 17:1192–1194

    Article  Google Scholar 

  • Potts SM, Han Y, Khan MA, Kushad MM, Rayburn AL, Korban SS (2012) Genetic diversity and characterization of a core collection of Malus germplasm using simple sequence repeats (SSRs). Plant Mol Biol Rep 30:827–837

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reim S, Höltken A, Höfer M (2013) Diversity of the European indigenous wild apple (Malus sylvestris (L.) Mill.) in the East Ore Mountains (Osterzgebirge), Germany: II. Genetic characterization. Genet Resour Crop Evol 60:879–892

    Article  Google Scholar 

  • Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood DR, Reeves PA, Forsline PL (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genomes 5:339–347

    Article  Google Scholar 

  • Richter TS, Soltis PS, Soltis DE (1994) Genetic variation within and among populations of the narrow endemic, Delphinium viridescens (Ranunculaceae). Am J Bot 1070–1076

  • Rohlf FJ (1994) NTSYS-pc Numerical taxonomy and multivariate analysis system (version 1.80). State University of New York

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Santelices B (1999) How many kinds of individual are there? Trends Ecol Evol 14:152–155

    Article  PubMed  Google Scholar 

  • Schoen DJ, Brown AHD (1995) Maximising genetic diversity in core collections of wild relatives of crop species. In: Hodgkin T, Brown AHD, van Hintum TJL, Morales EAV (eds) Core collections of plant genetic resources. Wiley, Chichester, pp 55–76

    Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel C, Costa F (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Urrestarazu J, Miranda C, Santesteban LG, Royo JB (2012) Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers. Tree Genet Genomes 8:1163–1180

    Article  Google Scholar 

  • Van Treuren R, Kemp H, Ernsting G, Jongejans B, Houtman H, Visser L (2010) Microsatellite genotyping of apple (Malus × domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genet Resour Crop Evol 57:853–865

    Article  Google Scholar 

  • Venturi S, Dondini L, Donini P, Sansavini S (2006) Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet 112:440–444

    Article  CAS  PubMed  Google Scholar 

  • Volk GM, Richards CM, Henk AD, Reilley AA, Bassil NV, Postman JD (2006) Diversity of wild Pyrus communis based on microsatellite analyses. J Am Soc Hortic Sci 131:408–417

    CAS  Google Scholar 

  • Volk GM, Richards CM, Henk AD, Reilley AA, Reeves PA, Forsline PL, Aldwinckle HS (2009) Capturing the diversity of wild Malus orientalis from Georgia, Armenia, Russia, and Turkey. J Am Soc Hortic Sci 134:453–459

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weissinger AK (1990) Technologies for germplasm conservation ex situ. In: Orians GHBF, Kunin WE, Swierbinski JE (eds) The preservation and valuation of biological resources. University of Washington Press, Seattle, pp 3–31

    Google Scholar 

Download references

Acknowledgments

This research was financially supported through grants from the Italian Ministry of Education, University and Research (FIRB project no. RBNE01SFXY) and partly funded under the EU seventh Framework Programme by the FruitBreedomics project no. 265582 “Integrated approach for increasing breeding efficiency in fruit tree crop”. The views expressed in this work are the sole responsibility of the authors and do not necessary reflect the views of the European Commission. The authors are grateful to Dr. Carlos Miranda from the Departamento de Produccion Agraria, Universidad Publica de Navarra, Spain, for kindly providing the instruction and help of using the MSTRAT software for statistic analysis of core collection calculation. Wei Liang’s PhD fellowship was funded by European Commission of Erasmus Mundus External Cooperation Windows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Tartarini.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 259 kb)

ESM 2

(PDF 53.4 kb)

ESM 3

(PDF 48.9 kb)

ESM 4

(PDF 44.2 kb)

ESM 5

(PDF 83.4 kb)

ESM 6

(PDF 131 kb)

ESM 7

(PDF 18.1 kb)

ESM 8

(PDF 61.1 kb)

ESM 9

(PDF 124 kb)

ESM 10

(PDF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Dondini, L., De Franceschi, P. et al. Genetic Diversity, Population Structure and Construction of a Core Collection of Apple Cultivars from Italian Germplasm. Plant Mol Biol Rep 33, 458–473 (2015). https://doi.org/10.1007/s11105-014-0754-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0754-9

Keywords

Navigation