Skip to main content
Log in

Microsatellite variation in maize landraces from Northwestern Argentina: genetic diversity, population structure and racial affiliations

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The highland region or Northwestern Argentina (NWA) is one of the southernmost areas of native maize cultivation and constitutes an expansion of the peruvian Andes sphere of influence. To examine the genetic diversity and racial affiliations of the landraces cultivated in this area, 18 microsatellite markers were used to characterize 147 individuals from 6 maize races representative of traditional materials. For the whole data set, a total of 184 alleles were found, with an average of 10.2 alleles per locus. The average gene diversity was 0.571. The observed patterns of genetic differentiation suggest that historical association is probably the main factor in shaping population structure for the landraces studied here. In agreement with morphological and cytogenetic data, Bayesian analysis of NWA landraces revealed the occurrence of three main gene pools. Assessment of racial affiliations using a combined dataset including previous data on American landraces showed a clear relationship between one of these gene pools and typical Andean races, whereas the remaining two gene pools exhibited a closer association to Caribbean accessions and native germplasm from the United States, respectively. These results highlight the importance of integrating regional genetic studies if a deeper understanding of maize diversification and dispersal is to be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson E, Cutler HC (1942) Races of Zea mays: I. Their recognition and classification. Ann Mo Bot Gard 29:69–89

    Article  Google Scholar 

  • Bracco M, Lia V, Gottlieb A, Cámara Hernández J, Poggio L (2009) Genetic diversity in maize landraces from indigenous settlements of Northeastern Argentina. Genetica 135:39–49

  • Bretting PK, Goodman MM, Stuber CW (1987) Karyological and isozyme variation in West Indian and allied American mainland races of maize. Am J Bot 74:1601–1613

    Article  CAS  Google Scholar 

  • Bretting PK, Goodman MM, Stuber CW (1990) Isozymatic variation in Guatemalan races of maize. Am J Bot 77:211–225

    Article  Google Scholar 

  • Brieger FG, Gurgel JTA, Paterniani E, Blumenschein A, Alleoni MR (1958) The races of maize in Brazil and other eastern South American countries. National Academy of ScienceNational Research Council Publications, Washington, DC

  • Brunson AM, Bower CW (1931) Pop corn. USDA Farmers′ Bull 1679:17

    Google Scholar 

  • Brush SB, Perales H (2007) A maize landscape: ethnicity and agro-biodiversity in Chiapas Mexico. Agric Ecosyst Environ 121:211–221

    Article  Google Scholar 

  • Cámara Hernández J, Miante Alzogaray AM (1997) Las razas de maíz de Jujuy y Salta Argentina. Proc 1er Taller Internacional de Recursos Fitogenéticos del Noroeste Argentino 1:19–23

    Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras JB, Madur D et al (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172(4):2449–2463

    Article  PubMed  CAS  Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras J-B, Gouesnard B, Charcosset A, Manicacci D (2007) Evaluating the reliability of structure outputs in case of relatedness between individuals. Crop Sci 47:887–890

    Google Scholar 

  • Colasanti J,ZY, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Goodman MM (1984) Isoenzymatic variation in Zea (Gramineae). Syst Bot 9:203–218

    Article  Google Scholar 

  • Doebley J, Goodman MM, Stuber CW (1983) Isozyme variation in maize from the southwestern United States taxonomic and anthropological implications. Maydica 28:94–120

    Google Scholar 

  • Doebley J, Goodman MM, Stuber CW (1985) Isozyme variation in the races of maize from Mexico. Am J Bot 72:629–639

    Article  CAS  Google Scholar 

  • Doebley J, Goodman MM, Stuber CW (1986) Exceptional genetic divergence of Northern Flint Corn. Am J Bot 73:64–69

    Article  Google Scholar 

  • Doebley J, Goodman MM, Stuber CW (1987) Patterns of isozyme variation between maize and Mexican Annual teosinte. Econ Bot 41:234–246

    Google Scholar 

  • Doebley J, Wendel JF, Smith JSC, Stuber CW, Goodman MM (1988) The origin of cornbelt maize: the isozyme evidence. Econ Bot 42:120–131

    Google Scholar 

  • Dubreuil P, Charcosset A (1998) Genetic diversity within and among maize populations: a comparison between isozyme and nuclear RFLP loci. Theor Appl Genet 96:577–587

    Article  CAS  Google Scholar 

  • El Mousadik A, Petit R (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1991–2004) Phylip (Phylogeny Inference Package). University of Washington, Washington

  • Gaggiotti OE, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Goodman MM (1990) Genetic and germplasm stocks worth conserving. J Hered 81:11–16

    PubMed  CAS  Google Scholar 

  • Goodman MM (2005) Broadening the U.S. germplasm base. Maydica 50:203–214

    Google Scholar 

  • Goodman MM, Bird R McK (1977) The races of Maize IV: tentative grouping of 219 Latin American Races. Econ Bot 31:204–221

    Google Scholar 

  • Goodman MM, Brown WL (1988) Races of corn. In: Sprague GF, Dudley JW (eds) Corn and corn improvement. Amer Soc Agron, Madison, WI, pp 33–79

  • Goodman MM, Stuber CW (1983) Races of maize. VI. Isozyme variation among races of maize in Bolivia. Maydica 28:169–187

    Google Scholar 

  • Goudet J (1995) Fstat version 1.2: a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet 1995

  • Hardy OJ, Charbonnel N, Freville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482

    PubMed  CAS  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T et al (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 96:5937–5943

    Article  PubMed  CAS  Google Scholar 

  • Horovitz S (1935) Distribución geográfica de factores genéticos en los maíces autóctonos del norte argentino. Rev Arg Agron 2:133–135

    Google Scholar 

  • Kahler AL, Hallauer AR, Gardner C (1986) Allozyme polymorphism within and among open-pollinated and adapted exotic populations of maize. Theor Appl Genet 72:592–601

    Article  CAS  Google Scholar 

  • Lia VV, Confalonieri VA, Poggio L (2007) B chromosome polymorphism in maize landraces: adaptive vs. demographic hypothesis of clinal variation. Genetics 177:895–904

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Goodman M, Muse S et al (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    PubMed  CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM et al (2002a) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman MM, Doebley JF (2002b) Microsatellites in Zea—variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104:436–450

    Article  PubMed  CAS  Google Scholar 

  • McClintock B, Kato TA, Blumenschein A (1981) Chromosome constitution of the races of maize, its significance in the interpretation of relationships between races and varieties in the Americas. Colegio de Postgraduados, Chapingo

    Google Scholar 

  • Minch E, Ruiz Linares A, Goldstein D, Feldman M, Cavalli-Sforza LL (1996) Microsat (version 1.5b): a computer program for calculating various statistics on microsatellite allele data. (Program available from: http://hpgl.stanford.edu/projects/microsat/)

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nielsen R, Slatkin M (2000) Likelihood analysis of ongoing gene flow and historical association. Evolution 54:44–50

    PubMed  CAS  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Perales RH, Benz BF, Brush SB (2005) Maize diversity and ethnolinguistic diversity in Chiapas, Mexico. Proc Natl Acad Sci USA 102:949–954

    Article  PubMed  CAS  Google Scholar 

  • Poggio L, Rosato M, Chiavarino AM, Naranjo CA (1998) Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Ann Bot (Lond) 82:107–115

    Article  Google Scholar 

  • Pressoir G, Berthaud J (2004) Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity 92:88–94

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Wen W (2003) Documentation for STRUCTURE software: Version 2. http://pritch.bsd.uchicago.edu

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reif JC, Xia XC, Melchinger AE et al (2004) Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci 44:326–334

    Article  CAS  Google Scholar 

  • Reif J, Warburton M, Xia X et al (2006) Grouping of accessions of Mexican races of maize revisited with SSR markers. Theor Appl Genet 113:177–185

    Article  PubMed  CAS  Google Scholar 

  • Rice W (1989) Analysing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Roberts LM, Grant UJ, Ramírez ER, Hatheway WH, PLwPCM Smith (1957) Races of Maize in Colombia. National Academy of Science–National Research Council Publications, Washington, DC

    Google Scholar 

  • Rosato M, Chiavarino AM, Naranjo CA, Cámara Hernandez J, Poggio L (1998) Genome size and numerical polymorphism for the B chromosome in races of maize (Zea mays ssp. mays, Poaceae). Am J Bot 85:168–174

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sanchez GJ, Stuber CW, Goodman MM (2000) Isozymatic diversity in the races of maize of the Americas. Maydica 45:185–203

    Google Scholar 

  • Santacruz-Varela A, Widrlechner MP, Ziegler KE et al (2004) Phylogenetic relationships among North American popcorns and their evolutionary links to Mexican and South American popcorns. Crop Sci 44:1456

    CAS  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Taller JM, Bernardo R (2004) Diverse adapted populations for improving northern maize inbreds. Crop Sci 44:1444–1449

    Article  Google Scholar 

  • Tarter JA, Goodman MM, Holland JB (2003) Testcross performance of semiexotic inbred lines derived from Latin American maize accessions. Crop Sci 43:2272–2278

    Article  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J et al (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:203–204

    Article  CAS  Google Scholar 

  • Torregrosa M, Cámara Hernandez J, Solari L et al (1980) Clasificación preliminar de formas raciales de maíz y su distribución geográfica en la República Argentina. Actas II Congreso Nacional de Maíz 1:5–17

    Google Scholar 

  • Vigouroux Y, Glaubitz JC, Matsuoka Y et al (2008) Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253

    Article  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  PubMed  CAS  Google Scholar 

  • Warburton ML, Xianchua X, Crossa J et al (2002) Genetic characterization of CIMMYT inbred lines and open pollinated populations using large scale fingerprinting methods. Crop Sci 42:1832–1840

    Article  Google Scholar 

  • Weir B, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wellhausen EJ, Roberts LM, Hernandez EMP (1952) Races of maize in Mexico. Harvard University Press, Cambridge

    Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, volume 4: variability within and among natural populations, 3rd edn. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ing. J. Cámara Hernández and A.M. Miante Alzogaray for helpfull discussion on racial characteristics. We are grateful to Dr. J. Doebley and Dr. Y. Matsuoka for kindly providing us the SSR data from Matsuoka et al. (2002a) and Liu et al. (2003). We are also in debt to Dr. Jim Holland, for generously sending us the inbred lines used to establish allele equivalencies between datasets; and to the anonymous reviewers who have greatly improved the manuscript. Several grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2296, PIP 5927), the Universidad de Buenos Aires (EX-317), and the Agencia Nacional de Promoción Científica y Tecnológica (BID 1201 OC-AR PICT 04443, BID 1728 OC-AR583 PICT 14119) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica V. Lia.

Additional information

Communicated by A. Charcosset.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2009_1108_MOESM1_ESM.pdf

Fig. S1 Neighbor-joining tree of 71 STRUCTURE outputs derived from the analysis of population structure in maize landraces from Northwestern Argentina. Distances among outputs were calculated following the methods of Camus-Kulandaivelu et al. (2007) (PDF 14 kb)

122_2009_1108_MOESM2_ESM.pdf

Fig. S2 Neighbor-joining tree of 71 STRUCTURE outputs derived from the analysis of population structure in a combined dataset including maize landraces from Northwestern Argentina and a set of American landraces from Matsuoka et al. (2002a). Distances among outputs were calculated following the methods of Camus-Kulandaivelu et al. (2007) (PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lia, V.V., Poggio, L. & Confalonieri, V.A. Microsatellite variation in maize landraces from Northwestern Argentina: genetic diversity, population structure and racial affiliations. Theor Appl Genet 119, 1053–1067 (2009). https://doi.org/10.1007/s00122-009-1108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1108-0

Keywords

Navigation