Skip to main content
Log in

Experimental Study and Kinetic Modeling for Ethanol Treatment by Air Dielectric Barrier Discharges

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper deals with the ethanol (EtOH) removal in both dry and humid air fed dielectric barrier discharges. The experimental results were compared to the predictions of a zero dimension kinetic model to elucidate the main chemical routes occurring in the plasma phase. This comparison shows that both the dissociative quenching of the nitrogen metastables and the oxidation reactions by the oxygen atom or the hydroxyl radical should be taken into account to explain the EtOH abatement in these kinds of discharges. The CH3CHOH radical seems to be the main product of the nitrogen dissociative collisions, whereas radicals issued from the α- and β-H atom cleavage are the dominant ethanol oxidation by-products. These radicals account for the production of acetaldehyde, the main by-product of the ethanol/air fed discharges investigated here. Apart the complete oxidation products, i.e. carbon oxides and water, aldehydes containing up to six carbon atoms, ketones, carboxylic acids, ozone, nitrogen oxides, nitric acid and organic nitrates were found in the exhaust gas. A kinetic pathway is proposed to explain the formation of the detected by-products. Water vapour addition to the feeding gas slightly improves the EtOH removal and promotes further oxidation of the main by-products, thus enhancing the CO2 selectivity. This behaviour could be ascribed to the higher amount of hydroxyl radicals, which could boost the production of the direct precursors of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  2. Chang JS (2008) Plasma Sources Sci Technol 17:045004

    Article  Google Scholar 

  3. Best Available Techniques Reference Documents (BREFs) in the framework of Article 13(1) of the Industrial Emissions Directive (IED). http://eippcb.jrc.ec.europa.eu/reference/

  4. Nimlos MR, Wolfrum EJ, Brewer ML, Fennell JA, Bintner G (1996) Environ Sci Technol 30:3102–3110

    Article  CAS  Google Scholar 

  5. Muggli DS, McCue JT, Falconer JL (1998) J Catal 173:470–483

    Article  CAS  Google Scholar 

  6. Kovalenko VV, Rumyantseva MN, Gaskov AM, Makshina EV, Yushchenko VV, Ivanova II, Ponzoni A, Faglia G, Comini E (2006) Inorg Mater 42:1088–1093

    Article  CAS  Google Scholar 

  7. Y-P I, Liu Y-C, Han K-Y, She T-C (2004) Environ Sci Technol 38:3785–3791

    Article  Google Scholar 

  8. Lyulyukin MN, Besov AS, Vorontsov AV (2013) Ind Eng Chem Res 52:5842–5848

    Article  CAS  Google Scholar 

  9. Aubry O, Met C, Khacef A, Cormier JM (2005) Chem Eng J 106:241–247

    Article  CAS  Google Scholar 

  10. Wang B, Lü Y, Zhang X, Hu S (2011) J Nat Gas Chem 20:151–154

    Article  CAS  Google Scholar 

  11. Wang W, Zhu C, Cao Y (2010) Int J Hydrog Energy 35:1951–1956

    Article  CAS  Google Scholar 

  12. Marinov NM (1999) Int J Chem Kinet 31:183–220

    Article  CAS  Google Scholar 

  13. Li J, Kazakov A, Dryer FL (2004) J Phys Chem A 108:7671–7680

    Article  CAS  Google Scholar 

  14. Gupta GK, Dean AM, Ahn K, Gorte RJ (2006) J Power Sources 158:497–503

    Article  CAS  Google Scholar 

  15. Esarte C, Millera A, Bilbao R, Alzueta MU (2009) Fuel Process Technol 90:496–503

    Article  CAS  Google Scholar 

  16. Li A, Zhang S, Reznik B, Lichtenberg S, Schoch G, Deutschmann O (2011) Proc Combust Inst 33:1843–1850

    Article  CAS  Google Scholar 

  17. Méricam-Bourdet N, Kirkpatrick M, Frochot D, Odic E, Tuvache F (2011) ecleer, Energy efficiency for industry. http://www.ecleer.fr/web/guest/industry/publications

  18. Méricam-Bourdet N (2012) PhD thesis, Supélec Engineering School, France

  19. Frochot D, Tuvache F (2012) European Patent EP2120514B1

  20. Lovascio S, Blin-Simiand N, Jorand F, Jeanney P, Pasquiers S (2012) Int J Plasma Environ Sci Technol 6:111–118

    Google Scholar 

  21. Blin-Simiand N, Pasquiers S, Jorand F, Magne L, Postel C (2010) In: International symposium on non-thermal/thermal plasma pollution control technology and sustainable energy (ISNTP-7) St. John’s, Terre Neuve, Canada. Proceedings in CD-ROM

  22. Méricam-Bourdet N, Kirkpatrick MJ, Tuvache F, Frochot D, Odic E (2012) Eur Phys J Appl Phys 57:30801

    Article  Google Scholar 

  23. Méricam-Bourdet N, Kirkpatrick MJ, Tuvache F, Odic E, Frochot D (2011) Proceedings of the 30th international conference on phenomena in ionized gases (ICPIG), Belfast, Northern Ireland, UK, Paper D14–214

  24. Korolevich M, Sivchik V, Zhbankov R, Lastochkina V (1986) J Appl Spectrosc 45:1275

    Article  Google Scholar 

  25. Allen G, Remedios J, Newnham D, Smith K, Monks P (2004) Atmos Chem Phys Discuss 4:5655

    Article  Google Scholar 

  26. Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C, Vacher J-R (2008) Plasma Chem Plasma Process 28:429–466

    Article  CAS  Google Scholar 

  27. Mfopara A, Kirkpatrick MJ, Odic E (2009) Plasma Chem Plasma Process 29:91–102

    Article  CAS  Google Scholar 

  28. Bo Zh, Yan JH, Li XD, Chi Y, Cen KF, Chéron BG (2007) Plasma Chem Plasma Process 27:546–558

    Article  CAS  Google Scholar 

  29. Falkenstein Z, Coogan JJ (1997) J Phys D Appl Phys 30:817–825

    Article  CAS  Google Scholar 

  30. Rosocha LA, Korzekwa RA (1999) J Adv Oxid Technol 4:247

    CAS  Google Scholar 

  31. Yan K, van Heesch EJM, Pemen AJM, Huijbrechts PAHJ (2001) Plasma Chem Plasma Process 21:107–137

    Article  CAS  Google Scholar 

  32. Koeta O, Pasquiers S, Blin-Simiand N, Jorand F, Bary A (2012) ESCAMPIG XXI, Viana do Castelo, Portugal. Proceedings, paper P2.1.20

  33. Koeta O, Pasquiers S, Blin-Simiand N, Jorand F, Bary A (2012) Int J Plasma Environ Sci Technol 6:227–232

    Google Scholar 

  34. NIST Chemical Kinetics Database, Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.5, Data Version 2012.02. http://kinetics.nist.gov/kinetics/

  35. Blin-Simiand N, Pasquiers S, Jorand F, Postel C, Vacher J-R (2009) J Phys D Appl Phys 42:122003

    Article  Google Scholar 

  36. Faider W, Pasquiers S, Blin-Simiand N, Magne L (2013) Plasma Sources Sci Technol 22:065010

    Article  Google Scholar 

  37. Pasquiers S, Blin-Simiand N, Magne L (2013) Plasma Phys Control Fusion 55:124023

    Article  Google Scholar 

  38. Frish M et al (2004) Gaussian 03, Revision C.02. Gaussian Inc., Wallingford

    Google Scholar 

  39. Faider W, Pasquiers S, Blin-Simiand N, Magne L (2013) J Phys D Appl Phys 46:105202

    Article  Google Scholar 

  40. Pasquiers S, Faider W, Blin-Simiand N, Magne L, Jeanney P, Jorand F (2012) Int J Plasma Environ Sci Technol 6:149–155

    Google Scholar 

  41. Teodoru S, Kusano Y, Bogaerts A (2012) Plasma Process Polym 9:652–689

    Article  CAS  Google Scholar 

  42. Hoard J, Wallington TJ, Bretz RL, Malkin A, Dorai R, Kushner MJ (2003) Int J Chem Kinet 35:231–238

    Article  CAS  Google Scholar 

  43. Rudolph R, Francke K-P, Miessner H (2003) Plasma Polym 8:153–161

    Article  Google Scholar 

  44. Yu-fang G, Dai-qi Y, Ke-fu C, Ya-feng T (2006) Plasma Chem Plasma Process 26:237–249

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the French Agency for Research (Agence Nationale de la Recherche) for its support of the PECCOVAIR Project (Grant ANR-09-ECOT-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Blin-Simiand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 236 kb)

11090_2014_9601_MOESM2_ESM.tif

Ozone concentration in dry air DBDs (air flow: 2l/min NTP). For the higher and lower value limits see the “Experimental” and “Modeling” sections in the text and reference [26]. (TIFF 2,899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovascio, S., Blin-Simiand, N., Magne, L. et al. Experimental Study and Kinetic Modeling for Ethanol Treatment by Air Dielectric Barrier Discharges. Plasma Chem Plasma Process 35, 279–301 (2015). https://doi.org/10.1007/s11090-014-9601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9601-x

Keywords

Navigation