Skip to main content
Log in

Humidity Effect on Toluene Decomposition in a Wire-plate Dielectric Barrier Discharge Reactor

  • Original Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Laboratory-scale experiments were performed to evaluate the humidity effect on toluene decomposition by using a wire-plate dielectric barrier discharge (DBD) reactor at room temperature and atmospheric pressure. The toluene decomposition efficiency as well as the carbon dioxide selectivity with/without water in a gas stream of N2 with 5% O2 was investigated. Under the optimal humidity of 0.2% the characteristics of toluene decomposition in various background gas, including air, N2 with 500 ppm O2, and N2 with 5% O2 were observed. In addition, the influence of a catalyst on the decomposition was studied at selected humidities. It was found that the optimum toluene removal efficiency was achieved by the gas stream containing 0.2% H2O, since the presence of water enhanced the CO2 selectivity. In addition, the toluene removal efficiency increased significantly in a dry gas stream but decreased with an increase in the humidity when the Co3O4/Al2O3/nickel foam catalyst was introduced into the discharge area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oda T (2003). J Electrostat 57:293

    Article  MathSciNet  Google Scholar 

  2. Radoiu MT (2003). Environ Sci Technol 37:3985

    Article  Google Scholar 

  3. Song Y-H, Kim S-J, Choi K-I, Yamamoto T (2002). J Electrostat. 55:189

    Article  Google Scholar 

  4. Sobacchi MG, Saveliev AV, Fridman AA, Gutsol AF, Kennedy LA (2003). Plasma Chem Plasma Process 23(2):347

    Article  Google Scholar 

  5. I Y-P, Liu Y-C, Han K-Y, She T-C (2004). Environ Sci Technol 38:3785

    Article  Google Scholar 

  6. Huang L, Nakajo K, Ozawa S, Matsuda H (2001). Environ Sci Technol 35:1276

    Article  Google Scholar 

  7. Ogata A, Miyamae K, Mizuno K, Kushiyama S, Tezuka M (2002). Plasma Chem Plasma Process 22:537

    Article  Google Scholar 

  8. Okumoto M, Mizuno A (2001). Catal Today 71:211

    Article  Google Scholar 

  9. Chang MB, Yu SJ (2001). Environ Sci Technol 35:1587

    Article  Google Scholar 

  10. Rudolph R, Francke KP, Miessner H (2002). Plasma Chem Plasma Process 22:401

    Article  Google Scholar 

  11. Snyder HR, Anderson GK (1998). IEEE T Plasma Sci 26:1695

    Article  ADS  Google Scholar 

  12. Yu SJ, Chang MB (2001). Plasma Chem Plasma Process 21:311

    Article  ADS  Google Scholar 

  13. Okubo M, Kuroki T, Kametaka H, Yamamoto T (2000). IEEE 868

  14. Guo YF, Ye DQ, Chen KF (2004). 5th Electrohydrodynamics International Workshop, Poitiers, France, p 327

  15. Khassin AA, Pietruszka BL, Heintze M, Parmon VN (2004). React Kinet Catal Lett 82:131

    Article  Google Scholar 

  16. Cal MP, Schluep M (2001). Environ Prog 20:151

    Article  Google Scholar 

  17. Lee HM, Chang MB (2003). Plasma Chem Plasma Process 23:541

    Article  Google Scholar 

  18. Kohno H, Berezin AA, Chang J-S, Tamura M, Yamamoto T, Shibuya A, Honda S (1998). IEEE Trans Ind Appl 34:953

    Article  Google Scholar 

  19. Urashima K, Chang J-S (2000). IEEE Trans Ind Appl 7:602

    Google Scholar 

  20. Futamura S, Zhang A, Prieto G, Yamamoto T (1998). IEEE Trans Ind Appl 34:967

    Article  Google Scholar 

  21. Einaga H, Ibusuki T, Futamura S (2000) IEEE 858

  22. Ogata A, Shintani N, Yamanouchi K, Mizuno K, Kushiyam S, Yamamoto T (2000). Plasma Chem Plasma Process 20:453

    Article  Google Scholar 

  23. Ayrault C, Barrault J, Blin-Simiand N, Jorand F, Pasquiers S, Rousseau A, Tatibouët JM (2004). Catal Today 89:75

    Article  Google Scholar 

  24. Yamashita R, Takahashi T, Oda T (1996) IEEE 1826

  25. Futamura S, Zhang A, Einaga H, Kabashima H (2002). Catal Today 72:259

    Article  Google Scholar 

  26. Heintze M, Pietruszka B (2004). Catal Today 89:21

    Article  Google Scholar 

  27. Demidiouk V, Chae JO (2005). IEEE T Plasma Sci 33:157

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Dai-qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu-fang, G., Dai-qi, Y., Ya-feng, T. et al. Humidity Effect on Toluene Decomposition in a Wire-plate Dielectric Barrier Discharge Reactor. Plasma Chem Plasma Process 26, 237–249 (2006). https://doi.org/10.1007/s11090-006-9008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-006-9008-4

Keywords

Navigation