Skip to main content
Log in

A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, the size-dependent geometrically nonlinear free vibration of functionally graded (FG) microplates is investigated. For this purpose, with the aid of Hamilton’s principle, a nonclassical rectangular microplate model is developed based on Mindlin’s strain gradient theory, Mindlin’s plate theory and the von Kármán geometric nonlinearity. For some specific values of the length scale material parameters, the simple form of size-dependent mathematical formulation based on the modified strain gradient theory (MSGT) and modified couple stress theory is obtained. The generalized differential quadrature method, numerical Galerkin scheme, periodic time differential operators and pseudo arc-length continuation method are utilized to determine the geometrically nonlinear free vibration characteristics of FG microplates with different boundary conditions. The parametric effects of thickness-to-material length scale ratio, material gradient index, length-to-thickness ratio, length-to-width ratio and boundary conditions on the nonlinear free vibration characteristics of FG microplates are studied through various numerical examples presented. It is found that a considerable difference exists between the results of various elasticity theories at small values of length scale parameter. A more precise prediction can be provided by using the size-dependent plate model based on the MSGT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fu, Y., Du, H., Huang, W., Zhang, S., Hu, M.: TiNi-based thin films in MEMS applications: a review. Sens. Actuators A Phys. 112, 395–408 (2004)

    Article  Google Scholar 

  2. Witvrouw, A., Mehta, A.: The use of functionally graded poly-SiGe layers for MEMS applications. In: Materials Science Forum, vol. 492, pp. 255–260 (2005)

  3. Rahaeifard, M., Kahrobaiyan, M., Ahmadian, M.: Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. In: ASME 2009. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 539–544 (2009)

  4. Lü, C.F., Lim, C.W., Chen, W.Q.: Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int. J. Solids Struct. 46, 1176–1185 (2009)

    Article  MATH  Google Scholar 

  5. Craciunescu, C., Wuttig, M.: New ferromagnetic and functionally graded shape memory alloys. ChemInform 34, 139–146 (2003)

    Article  Google Scholar 

  6. Fu, Y., Du, H., Zhang, S.: Functionally graded TiN/TiNi shape memory alloy films. Mater. Lett. 57, 2995–2999 (2003)

    Article  Google Scholar 

  7. Altenbach, H., Eremeyev, V.A.: Direct approach-based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78, 775–794 (2008)

    Article  MATH  Google Scholar 

  8. Altenbach, H., Eremeyev, V.: Eigen-vibrations of plates made of functionally graded material. Comput. Mater. Contin. 9, 153–178 (2009)

    MATH  Google Scholar 

  9. Altenbach, H., Eremeyev, V.A.: On the time-dependent behavior of FGM plates In: Key Engineering Materials, vol. 399, pp. 63–70 (2008)

  10. Ke, L.-L., Wang, Y.-S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  11. Ansari, R., Shojaei, M.F., Mohammadi, V., Gholami, R., Rouhi, H.: Nonlinear vibration analysis of microscale functionally graded Timoshenko beams using the most general form of strain gradient elasticity. J. Mech. 30, 161–172 (2014)

    Article  Google Scholar 

  12. Kahrobaiyan, M., Asghari, M., Rahaeifard, M., Ahmadian, M.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49, 1256–1267 (2011)

    Article  MathSciNet  Google Scholar 

  13. Ansari, R., Faghih, M., Shojaei, V., Mohammadi, R., Gholami, Darabi, M.: Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory. Compos. Struct. 114, 124–134 (2014)

    Article  Google Scholar 

  14. Shaat, M., Mahmoud, F., Alieldin, S., Alshorbagy, A.: Finite element analysis of functionally graded nano-scale films. Finite Elem. Anal. Des. 74, 41–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gholami, R., Darvizeh, A., Ansari, R., Hosseinzadeh, M.: Size-dependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory. Meccanica 49(7), 1679–1695 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, B., He, Y., Liu, D., Shen, L., Lei, J.: Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory. Compos. Struct. 119, 578–597 (2014)

    Article  Google Scholar 

  17. Gholami, R., Ansari, R., Darvizeh, A., Sahmani, S.: Axial buckling and dynamic stability of functionally graded microshells based on the modified couple stress theory. Int. J. Struct. Stab. Dyn. 15, 1450070 (2014)

    Article  MathSciNet  Google Scholar 

  18. Zhang, B., He, Y., Liu, D., Lei, J., Shen, L., Wang, L.: A size-dependent third-order shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates. Compos. Part B Eng. 79, 553–580 (2015)

    Article  Google Scholar 

  19. Tilmans, H.A., Legtenberg, R.: Electrostatically driven vacuum-encapsulated polysilicon resonators: part II. Theory and performance. Sens. Actuators A Phys. 45, 67–84 (1994)

    Article  Google Scholar 

  20. Zhang, X., Chau, F., Quan, C., Lam, Y., Liu, A.: A study of the static characteristics of a torsional micromirror. Sens. Actuators A Phys. 90, 73–81 (2001)

    Article  Google Scholar 

  21. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508, 8 (2003)

  22. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060 (2005)

    Article  Google Scholar 

  23. Stölken, J., Evans, A.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  24. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  26. Gurtin, M., Weissmüller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  Google Scholar 

  27. Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mindlin, R., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  29. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  30. Altan, B., Aifantis, E.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8, 231–282 (1997)

    Article  Google Scholar 

  31. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  32. Ramezani, S.: A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory. Int. J. Non Linear Mech. 47, 863–873 (2012)

    Article  Google Scholar 

  33. Ansari, R., Gholami, R., Faghih, M., Shojaei, V., Mohammadi, Sahmani, S.: Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Compos. Struct. 100, 385–397 (2013)

    Article  Google Scholar 

  34. Ramezani, S.: A shear deformation micro-plate model based on the most general form of strain gradient elasticity. Int. J. Mech. Sci. 57, 34–42 (2012)

    Article  Google Scholar 

  35. Zhang, B., He, Y., Liu, D., Shen, L., Lei, J.: An efficient size-dependent plate theory for bending, buckling and free vibration analyses of functionally graded microplates resting on elastic foundation. Appl. Math. Model. 39, 3814–3845 (2015)

    Article  MathSciNet  Google Scholar 

  36. Ansari, R., Gholami, R., Mohammadi, V., Shojaei, M.F.: Size-dependent pull-in instability of hydrostatically and electrostatically actuated circular microplates. J. Comput. Nonlinear Dyn. 8, 021015 (2013)

    Article  Google Scholar 

  37. Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L.: A novel size-dependent functionally graded curved mircobeam model based on the strain gradient elasticity theory. Compos. Struct. 106, 374–392 (2013)

    Article  Google Scholar 

  38. Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V., Darabi, M.: Size-dependent nonlinear bending and postbuckling of functionally graded Mindlin rectangular microplates considering the physical neutral plane position. Compos. Struct. 127, 87–98 (2015)

    Article  Google Scholar 

  39. Beni, Y.T., Mehralian, F., Razavi, H.: Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120, 65–78 (2015)

    Article  Google Scholar 

  40. Şimşek, M., Aydın, M., Yurtcu, H., Reddy, J.: Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory. Acta Mech. 226, 3807–3822 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L.: Non-classical Timoshenko beam element based on the strain gradient elasticity theory. Finite Elem. Anal. Des. 79, 22–39 (2014)

    Article  MathSciNet  Google Scholar 

  42. Zeighampour, H., Beni, Y.T., Mehralian, F.: A shear deformable conical shell formulation in the framework of couple stress theory. Acta Mech. 226, 2607–2629 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Akgöz, B., Civalek, Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226, 2277–2294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Asghari, M.: Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int. J. Eng. Sci. 51, 292–309 (2012)

    Article  MathSciNet  Google Scholar 

  45. Chen, W., Xu, M., Li, L.: A model of composite laminated Reddy plate based on new modified couple stress theory. Compos. Struct. 94, 2143–2156 (2012)

    Article  Google Scholar 

  46. Wang, Y.-G., Lin, W.-H., Zhou, C.-L.: Nonlinear bending of size-dependent circular microplates based on the modified couple stress theory. Arch. Appl. Mech. 84, 391–400 (2014)

    Article  MATH  Google Scholar 

  47. Ghayesh, M.H., Farokhi, H.: Nonlinear dynamics of microplates. Int. J. Eng. Sci. 86, 60–73 (2015)

    Article  MathSciNet  Google Scholar 

  48. Gholipour, A., Farokhi, H., Ghayesh, M.H.: In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn. 79, 1771–1785 (2014)

    Article  Google Scholar 

  49. Ke, L.L., Yang, J., Kitipornchai, S., Bradford, M.A., Wang, Y.S.: Axisymmetric nonlinear free vibration of size-dependent functionally graded annular microplates. Compos. Part B Eng. 53, 207–217 (2013)

    Article  Google Scholar 

  50. Reddy, J.N., Kim, J.: A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos. Struct. 94, 1128–1143 (2012)

    Article  Google Scholar 

  51. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V., Sahmani, S.: Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory. Eur. J. Mech. A Solids 49, 251–267 (2015)

    Article  MathSciNet  Google Scholar 

  52. Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta. Mech. Sin. 31, 373–382 (2015)

    Article  MathSciNet  Google Scholar 

  53. Giorgio, I., Grygoruk, R., Dell’isola, F., Steigmann, D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  54. Dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118, 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Thai, H.-T., Choi, D.-H.: Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos. Struct. 95, 142–153 (2013)

    Article  Google Scholar 

  56. Ansari, R., Gholami, R., Faghih, M., Shojaei, V., Mohammadi, Darabi, M.: Thermal buckling analysis of a mindlin rectangular FGM microplate based on the strain gradient theory. J. Therm. Stress. 36, 446–465 (2013)

    Article  Google Scholar 

  57. Fares, M., Elmarghany, M.K., Atta, D.: An efficient and simple refined theory for bending and vibration of functionally graded plates. Compos. Struct. 91, 296–305 (2009)

    Article  Google Scholar 

  58. Shu, C.: Differential Quadrature and its Application in Engineering. Springer, New York (2000)

    Book  MATH  Google Scholar 

  59. Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10. Siam, Philadelphia (2000)

    Book  MATH  Google Scholar 

  60. Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. Appl. Bifurc. Theory 1, 359–384 (1977)

    MathSciNet  Google Scholar 

  61. Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J. Sound Vib. 331, 94–106 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gholami.

Appendices

Appendix 1

Considering Eqs. (9), (10), (12) as well as the following constants

$$\begin{aligned} \beta _1= & {} 2\left( {a_1 +a_2 +a_3 +a_4 +a_5 } \right) ,\beta _2 =a_1 +2a_2 ,\nonumber \\ \beta _3= & {} a_1 +2a_3,\beta _4 =a_1 +2a_5,\beta _5 =2\left( {a_2 +a_4 } \right) ,\nonumber \\ \beta _6= & {} a_3 +2a_4+a_5 \end{aligned}$$
(47)

and introducing the following parameters

$$\begin{aligned} \left\{ {A_{11} ,B_{11} ,D_{11} } \right\}= & {} \int _{-h/2}^{h/2} \left( {\lambda +2\mu } \right) \left\{ {1,x_3 ,x_3^2 } \right\} \hbox {d}x_3 ,\nonumber \\ \left\{ {A_{12} ,B_{12} ,D_{12} } \right\}= & {} \int _{-h/2}^{h/2} {\lambda }\left\{ {1,x_3 ,x_3^2 } \right\} \hbox {d}x_3 ,\nonumber \\ \left\{ {A_{55} ,B_{55} ,D_{55} } \right\}= & {} \int _{-h/2}^{h/2} {\upmu }\left\{ {1,x_3 ,x_3^2 } \right\} \hbox {d}x_3 ,\nonumber \\ A_i= & {} \int _{-h/2}^{h/2} a_i \hbox {d}x_3 , \left\{ {E_i ,F_i ,G_i } \right\} \nonumber \\= & {} \int _{-h/2}^{h/2} \beta _i \left\{ {1,x_3 ,x_3^2 } \right\} \hbox {d}x_3 \end{aligned}$$
(48)

the classical and nonclassical resultant forces and moments \(\left( {N_{ij} ,Q_i ,M_{ij} ,T_{ijk} ,M_{ijk} } \right) \) can be written as follows

$$\begin{aligned} N_{11}= & {} A_{11} \kappa _{11}^0 +B_{11} \kappa _{11}^1 +A_{12} \kappa _{22}^0\nonumber \\&+B_{12} \kappa _{22}^1 , N_{12} =2A_{55} \kappa _{12}^0 +2B_{55} \kappa _{12}^1 ,\nonumber \\ N_{22}= & {} A_{11} \kappa _{22}^0 +B_{11} \kappa _{22}^1 +A_{12} \kappa _{11}^0\nonumber \\&+B_{12} \kappa _{11}^1 , \left( {Q_1 ,Q_2 } \right) =k_s A_{55} \left\{ {\gamma _1 ,\gamma _2 } \right\} , \end{aligned}$$
(49)
$$\begin{aligned} M_{11}= & {} B_{11} \kappa _{11}^0 +D_{11} \kappa _{11}^1 +B_{12} \kappa _{22}^0\nonumber \\&+D_{12} \kappa _{22}^1 , M_{12} =2B_{55} \kappa _{12}^0 +2D_{55} \kappa _{12}^1 ,\nonumber \\ M_{22}= & {} B_{11} \kappa _{22}^0 +D_{11} \kappa _{22}^1\nonumber \\&+B_{12} \kappa _{11}^0 +D_{12} \kappa _{11}^1 ,\nonumber \\ T_{111}= & {} E_1 \kappa _{11,1}^0 +E_2 \kappa _{22,1}^0 +E_3 \kappa _{12,2}^0\nonumber \\&+F_1 \kappa _{11,1}^1 +F_2 \kappa _{22,1}^1 +F_3 \kappa _{12,2}^1 ,\nonumber \\ T_{211}= & {} E_4 \kappa _{12,1}^0 +E_5 \kappa _{11,2}^0 +E_2 \kappa _{22,2}^0 +F_4 \kappa _{12,1}^1\nonumber \\&+F_5 \kappa _{11,2}^1 +F_2 \kappa _{22,2}^1 ,\nonumber \\ T_{122}= & {} E_2 \kappa _{11,1}^0 +E_5 \kappa _{22,1}^0 +E_4 \kappa _{12,2}^0\nonumber \\&+F_2 \kappa _{11,1}^1 +F_5 \kappa _{22,1}^1 +F_4 \kappa _{12,2}^1 ,\nonumber \\ T_{222}= & {} E_1 \kappa _{22,2}^0 +E_3 \kappa _{12,1}^0 +E_2 \kappa _{11,2}^0\nonumber \\&+F_1 \kappa _{22,2}^1 +F_3 \kappa _{12,1}^1 +F_2 \kappa _{11,2}^1 ,\nonumber \\ T_{112}= & {} ( 2E_6 \kappa _{12,1}^0 +E_4 \kappa _{11,2}^0 +E_3 \kappa _{22,2}^0\nonumber \\&+2F_6 \kappa _{12,1}^1 +F_4 \kappa _{11,2}^1 +F_3 \kappa _{22,2}^1 )/2,\nonumber \\ T_{221}= & {} ( 2E_6 \kappa _{12,2}^0 +E_3 \kappa _{11,1}^0 +E_4 \kappa _{22,1}^0 +2F_6 \kappa _{12,2}^1\nonumber \\&+F_3 \kappa _{11,1}^1+F_4 \kappa _{22,1}^1 )/2, \end{aligned}$$
(50)
$$\begin{aligned} T_{311}= & {} \frac{1}{2}\left( {E_4 \gamma _{1,1} +2E_5 \kappa _{11}^1 +A_1 \gamma _{2,2} +4A_2 \kappa _{22}^1 } \right) ,T_{322}\nonumber \\&=\frac{1}{2}\left( {E_4 \gamma _{2,2} +2E_5 \kappa _{22}^1 +A_1 \gamma _{1,1} +4A_2 \kappa _{11}^1 } \right) ,\nonumber \\ T_{xxz}= & {} \left( {E_6 \gamma _{1,1} +E_4 \kappa _{11}^1 +A_1 \kappa _{22}^1 +A_3 \gamma _{2,2} } \right) /2,\nonumber \\&T_{yyz} =\left( {E_6 \gamma _{2,2} +E_4 \kappa _{22}^1 +A_1 \kappa _{11}^1 +A_3 \gamma _{1,1} } \right) /2,\nonumber \\ T_{213}= & {} \left( {2A_4 \gamma _{1,2} +A_5 \gamma _{2,1} +2A_5 \kappa _{12}^1 } \right) /2, T_{123}\nonumber \\&=\left( {2A_4 \gamma _{2,1} +A_5 \gamma _{1,2} +2A_5 \kappa _{12}^1 } \right) /2,\nonumber \\ T_{312}= & {} \left( {4A_4 \kappa _{12}^1 +A_5 \gamma _{2,1} +A_5 \gamma _{1,2} } \right) /2,\nonumber \\ M_{xxx}= & {} F_1 \kappa _{11,1}^0 +F_2 \kappa _{22,1}^0 +F_3 \kappa _{12,2}^0 +G_1 \kappa _{11,1}^1\nonumber \\&+\,G_2 \kappa _{22,1}^1 +G_3 \kappa _{12,2}^1 ,\nonumber \\ M_{yxx}= & {} F_4 \kappa _{12,1}^0 +F_5 \kappa _{11,2}^0 +F_2 \kappa _{22,2}^0 +G_4 \kappa _{12,1}^1\nonumber \\&+\,G_5 \kappa _{11,2}^1 +G_2 \kappa _{22,2}^1 ,\nonumber \\ M_{xyy}= & {} F_2 \kappa _{11,1}^0 +F_5 \kappa _{22,1}^0 +F_4 \kappa _{12,2}^0 +G_2 \kappa _{11,1}^1\nonumber \\&+\,G_5 \kappa _{22,1}^1 +G_4 \kappa _{12,2}^1 ,\nonumber \\ M_{yyy}= & {} F_1 \kappa _{22,2}^0 +F_3 \kappa _{12,1}^0 +F_2 \kappa _{11,2}^0 +G_1 \kappa _{22,2}^1\nonumber \\&+\,G_3 \kappa _{12,1}^1 +G_2 \kappa _{11,2}^1 ,\nonumber \\ M_{112}= & {} ( 2F_6 \kappa _{12,1}^0 +F_4 \kappa _{11,2}^0 +F_3 \kappa _{22,2}^0 +2G_6 \kappa _{12,1}^1\nonumber \\&+\,G_4 \kappa _{11,2}^1 +G_3 \kappa _{22,2}^1 )/2,\nonumber \\ M_{221}= & {} ( 2F_6 \kappa _{12,2}^0 +F_3 \kappa _{11,1}^0 +F_4 \kappa _{22,1}^0 +2G_6 \kappa _{12,2}^1\nonumber \\&+\,G_3 \kappa _{11,1}^1 +G_4 \kappa _{22,1}^1 )/2. \end{aligned}$$
(51)

Appendix 2

1.1 Hadamard and Kronecker products

Definition 1

Considering the matrices \(\mathbf{A}=\left[ {A_{ij} } \right] _{N\times M} \) and \(\mathbf{B}=\left[ {B_{ij} } \right] _{N\times M} \), the Hadamard product of these matrices can be expressed as \(\mathbf{A}\circ \mathbf{B}=\left[ {A_{ij} B_{ij} } \right] _{N\times M} \).

Definition 2

If \(\mathbf{A}\) and \(\mathbf{B}\) are m-by-n and \(p-\)by-q matrices, then the Kronecker product \(\mathbf{A}\otimes \mathbf{B}\) is an mp-by-nq block matrix and expressed as

$$\begin{aligned} \mathbf{A}\otimes \mathbf{B}= \left[ {{\begin{array}{ccccc} {a_{11} \mathbf{B}}&{} \cdots &{} {a_{1n} \mathbf{B}} \\ \vdots &{} \ddots &{} \vdots \\ {a_{m1} \mathbf{B}}&{} \cdots &{} {a_{mn} \mathbf{B}} \\ \end{array} }} \right] _{mp\times nq} \end{aligned}$$

1.2 Integral matrix operators

$$\begin{aligned} \int _{x_1 }^{x_N } f\left( x \right) \hbox {d}x= & {} \left( {\mathop \sum \limits _{r=0}^{N-1} \tilde{\mathbf{X}} ^{\left( r \right) }{} \mathbf{D}_x^{\left( r \right) } } \right) \mathbf{F}=\mathbf{S}_x\\ \mathbf{F}, \mathbf{S}_x= & {} \left[ {S_x } \right] _{1\times N} \end{aligned}$$

where \(\mathbf{D}_x^{\left( r \right) } \) is the GDQ differential operator, and

$$\begin{aligned} \tilde{\mathbf{X}} ^{\left( r \right) }= & {} \left[ \frac{\left( {x_{2} -x_{1} } \right) ^{r+1}}{2^{r+1}\left( {r+1} \right) !},\ldots ,\right. \nonumber \\&\quad \frac{\left( {x_{i+1} -x_i } \right) ^{r+1}-\left( {x_{i-1} -x_i } \right) ^{r+1}}{2^{r+1}\left( {r+1} \right) !},\ldots ,\nonumber \\&\quad \left. -\,\frac{\left( {x_{N-1} -x_N } \right) ^{r+1}}{2^{r+1}\left( {r+1} \right) } \right] ,\\&\qquad i=2,3,\ldots ,N-1 \end{aligned}$$

Appendix 3

Considering the constants defined Eqs. (19), (21) based on the modified strain gradient theory can be expressed as

Compared to the size-dependent microplate model based on the modified couple stress theory given in [13], the colored terms are added to the governing equation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, R., Ansari, R. A most general strain gradient plate formulation for size-dependent geometrically nonlinear free vibration analysis of functionally graded shear deformable rectangular microplates. Nonlinear Dyn 84, 2403–2422 (2016). https://doi.org/10.1007/s11071-016-2653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2653-0

Keywords

Navigation