Skip to main content
Log in

Direct approach-based analysis of plates composed of functionally graded materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The classical plate theory can be applied to thin plates made of classical materials like steel. The first theory allowing the analysis of such plates was elaborated by Kirchhoff. But this approach was connected with various limitations (e.g., constant material properties in the thickness direction). In addition, some mathematical inconsistencies like the order of the governing equation and the number of boundary conditions exist. During the last century many suggestions for improvements of the classical plate theory were made. The engineering direction of improvements was ruled by applications (e.g., the use of laminates or sandwiches as the plate material), and so new hypotheses for the derivation of the governing equations were introduced. In addition, some mathematical approaches like power series expansions or asymptotic integration techniques were applied. A conceptional different direction is connected with the direct approach in the plate theory. This paper presents the extension of Zhilin’s direct approach to plates made of functionally graded materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: (eds.) (1972). Handbook of Mathematical Functions. Dover, New York

    MATH  Google Scholar 

  2. Altenbach H. (1988). Eine direkt formulierte lineare Theorie für viskoelastische Platten und Schalen. Ingenieur Archiv 58: 215–228

    Article  MATH  Google Scholar 

  3. Altenbach H. (2000). An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. Int. J. Solids Struct. 37(25): 3503–3520

    Article  MATH  Google Scholar 

  4. Altenbach H. (2000). On the determination of transverse shear stiffnesses of orthotropic plates. ZAMP 51: 629–649

    Article  MATH  MathSciNet  Google Scholar 

  5. Altenbach H. and Zhilin P. (1988). A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki 11(4): 107–148

    MathSciNet  Google Scholar 

  6. Altenbach, H., Zhilin, P.A.: The theory of simple elastic shells. In: Kienzler, R., Altenbach, H., Ott, I. (eds.) Critical Review of the Theories of Plates and Shells and New Applications. Lect. Notes Appl. Comp. Mech, vol. 16, pp. 1–12. Springer, Berlin (2004)

  7. Altenbach H., Altenbach J. and Naumenko K. (1998). Ebene Flächentragwerke. Grundlagen der Modellierung und Berechnung von Scheiben und Platten. Springer, Berlin

    MATH  Google Scholar 

  8. Altenbach H., Altenbach J. and Kissing W. (2004). Mechanics of Composite Structural Elements. Springer, Berlin

    Google Scholar 

  9. Ashby M.F., Evans A.G., Fleck N.A., Gibson L.J., Hutchinson J.W. and Wadley H.N.G. (2000). Metal Foams: A Design Guid. Butterworth-Heinemann, Boston

    Google Scholar 

  10. Banhart J. (2000). Manufacturing routes for metallic foams. J. Miner. 52(12): 22–27

    Google Scholar 

  11. Chróścielewski J., Makowski J. and Pietraszkiewicz W. (2004). Statics and dynamics of multifold shells. Non-linear theory and finite element method (in Polish). Wydawnictwo IPPT PAN, Warszawa

    Google Scholar 

  12. Gibson L.J. and Ashby M.F. (1997). Cellular Solids: Structure and Properties, 2nd edn. Cambridge Solid State Science Series. Cambridge University Press, Cambridge

  13. Grigolyuk, E.I., Seleznev, I.T.: Nonclassical theories of vibration of beams, plates and shelles (in Russian). In: Itogi nauki i tekhniki, Mekhanika tverdogo deformiruemogo tela, vol. 5, VINITI, Moskva (1973)

  14. Gupta N. and Ricci W. (2006). Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness. Mater. Sci. Eng. A 427: 331–342

    Article  Google Scholar 

  15. El Hadek M.A. and Tippur H.V. (2003). Dynamic fracture parameters and constraint effects in functionally graded syntactic epoxy foams. Int. J. Solids struc. 40: 1885–1906

    Article  Google Scholar 

  16. Kienzler R. (2002). On the consistent plate theories. Arch. Appl. Mech. 72: 229–247

    MATH  Google Scholar 

  17. Kienzler, R., Altenbach, H., Ott, I.: (eds.) Critical review of the theories of plates and shells, new applications. Lect. Notes Appl. Comp. Mech. vol. 16, Springer, Berlin (2004)

  18. Kirchhoff G.R. (1850). Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Crelles Journal für die reine und angewandte Mathematik 40: 51–88

    Article  MATH  Google Scholar 

  19. Libai A. and Simmonds J.G. (1998). The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  20. Lurie A.I. (2005). Theory of Elasticity. Foundations of Engineering Mechanics. Springer, Berlin

    Google Scholar 

  21. Mindlin R.D. (1951). Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Trans. ASME J. Appl. Mech. 18: 31–38

    MATH  Google Scholar 

  22. Naghdi, P.: The theory of plates and shells. In: Flügge, S. (ed.) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Heidelberg (1972)

    Google Scholar 

  23. Nye J.F. (2000). Physical Properties of Crystals. Oxford Science Publications, Clarendon, Oxford

    Google Scholar 

  24. Reissner E. (1944). On the theory of bending of elastic plates. J. Math. Phys. 23: 184–194

    MATH  MathSciNet  Google Scholar 

  25. Reissner E. (1945). The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12(11): A69–A77

    MathSciNet  Google Scholar 

  26. Reissner E. (1947). On bending of elastic plates. Q. Appl. Math. 5: 55–68

    MATH  MathSciNet  Google Scholar 

  27. Reissner E. (1985). Reflection on the theory of elastic plates. Appl. Mech. Rev. 38(11): 1453–1464

    Article  Google Scholar 

  28. Rothert, H.: Direkte Theorie von Linien- und Flächentragwerken bei viskoelastischen Werkstoffverhalten. Techn.-Wiss. Mitteilungen des Instituts für Konstruktiven Ingenieurbaus 73-2, Ruhr-Universität, Bochum (1973)

  29. Stoer J. and Bulirsch R. (1980). Introduction to Numerical Analysis. Springer, New York

    Google Scholar 

  30. Timoshenko S.P. and Woinowsky-Krieger S. (1985). Theory of Plates and Shells. McGraw Hill, New York

    Google Scholar 

  31. Truesdell C. (1964). Die Entwicklung des Drallsatzes. ZAMM 44(4/5): 149–158

    MATH  MathSciNet  Google Scholar 

  32. Zhilin P.A. (1976). Mechanics of deformable directed surfaces. Int. J. Solids Struc. 12: 635–648

    Article  MathSciNet  Google Scholar 

  33. Zhilin, P.A.: Applied mechanics. Foundations of the theory of shells (in Russian). St Petersburg State Polytechnical University (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach.

Additional information

The second author was supported by DFG grant 436RUS17/21/07.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altenbach, H., Eremeyev, V.A. Direct approach-based analysis of plates composed of functionally graded materials. Arch Appl Mech 78, 775–794 (2008). https://doi.org/10.1007/s00419-007-0192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0192-3

Keywords

Navigation