Skip to main content
Log in

A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new non-classical sinusoidal plate model is developed on the basis of modified strain gradient theory. This model takes into account the effects of shear deformation without any shear correction factors and also can capture the size effects due to additional material length scale parameters. The governing equations and corresponding boundary conditions for bending, buckling, and free vibration analysis of the microplate are derived by implementing Hamilton’s principle. Analytical solutions based on the Fourier series solution are presented for simply supported square microplates. A detailed parametric study is performed to demonstrate the influences of thickness-to-length scale parameter ratio, length-to-thickness ratio, and shear deformation on deflection, critical buckling load, and fundamental frequencies of microplates. It is observed that the effect of shear deformation becomes more significant for smaller values of length-to-thickness ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faris W., Nayfeh A.H.: Mechanical response of a capacitive microsensor under thermal load. Commun. Nonlinear Sci. Numer. Simul. 12, 776–783 (2007)

    Article  MATH  Google Scholar 

  2. Kahrobaiyan M.H., Asghari M., Rahaeifard M., Ahmadian M.T.: Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1985–1994 (2010)

    Article  Google Scholar 

  3. Moser Y., Gijs M.A.M.: Miniaturized flexible temperature sensor. J. Microelectromech. Syst. 16, 1349–1354 (2007)

    Article  Google Scholar 

  4. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  5. McFarland A.W., Colton J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  6. Poole W.J., Ashby M.F., Fleck N.A.: Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 34, 559–564 (1996)

    Article  Google Scholar 

  7. Stölken J.S., Evans A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  8. Koiter W.T.: Couple stresses in the theory of elasticity: I and II. Proc. K. Ned. Akad. Wet. B 67, 17–44 (1964)

    MATH  Google Scholar 

  9. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  10. Toupin R.A.: Theory of elasticity with couple stresses. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eringen A.C.: Theory of micropolar plates. Z. Angew. Math. Phys. 18, 12–30 (1967)

    Article  Google Scholar 

  12. Eringen A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  14. Aifantis E.C.: Gradient deformation models at nano, micro, and macro scales. J. Eng. Mater. Technol. 121, 189–202 (1999)

    Article  Google Scholar 

  15. Fleck N.A., Hutchinson J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fleck N.A., Hutchinson J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  MATH  Google Scholar 

  17. Vardoulakis I., Sulem J.: Bifurcation Analysis in Geomechanics. Blackie/Chapman & Hall, London (1995)

    Google Scholar 

  18. Akgöz B., Civalek Ö.: Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM). Compos. Part B Eng. 55, 263–268 (2013)

    Article  Google Scholar 

  19. Akgöz B., Civalek Ö.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20, 606–616 (2014)

    Article  MathSciNet  Google Scholar 

  20. Güven U.: Love–Bishop rod solution based on strain gradient elasticity theory. Comptes Rendus Mécanique 342, 8–16 (2014)

    Article  Google Scholar 

  21. Kahrobaiyan M.H., Asghari M., Ahmadian M.T.: Longitudinal behavior of strain gradient bars. Int. J. Eng. Sci. 66-67, 44–59 (2013)

    Article  Google Scholar 

  22. Kahrobaiyan M.H., Tajalli S.A., Movahhedy M.R., Akbari J., Ahmadian M.T.: Torsion of strain gradient bars. Int. J. Eng. Sci. 49, 856–866 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sadeghi H., Baghani M., Naghdabadi R.: Strain gradient elasticity solution for functionally graded micro-cylinders. Int. J. Eng. Sci. 50, 22–30 (2012)

    Article  MathSciNet  Google Scholar 

  24. Akgöz B., Civalek Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49, 1268–1280 (2011)

    Article  Google Scholar 

  25. Akgöz B., Civalek Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)

    Article  MATH  Google Scholar 

  26. Akgöz B., Civalek Ö.: A size-dependent shear deformation beam model based on the strain gradient elasticity theory. Int. J. Eng. Sci. 70, 1–14 (2013)

    Article  Google Scholar 

  27. Akgöz B., Civalek Ö.: Shear deformation beam models for functionally graded microbeams with new shear correction factors. Compos. Struct. 112, 214–225 (2014)

    Article  Google Scholar 

  28. Ansari R., Gholami R., Sahmani S.: Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos. Struct. 94, 221–228 (2011)

    Article  Google Scholar 

  29. Asghari M., Kahrobaiyan M.H., Nikfar M., Ahmadian M.T.: A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech. 223, 1233–1249 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ghayesh M.H., Amabili M., Farokhi H.: Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int. J. Eng. Sci. 63, 52–60 (2013)

    Article  MathSciNet  Google Scholar 

  31. Lei J., He Y., Zhang B., Gan Z., Zeng P.: Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory. Int. J. Eng. Sci. 72, 36–52 (2013)

    Article  Google Scholar 

  32. Kahrobaiyan M.H., Rahaeifard M., Tajalli S.A., Ahmadian M.T.: A strain gradient functionally graded Euler–Bernoulli beam formulation. Int. J. Eng. Sci. 52, 65–76 (2012)

    Article  MathSciNet  Google Scholar 

  33. Kong S., Zhou S., Nie Z., Wang K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang B., Zhao J., Zhou S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A Solids 29, 591–599 (2010)

    Article  Google Scholar 

  35. Zhang B., He Y., Liu D., Gan Z., Shen L.: Non-classical Timoshenko beam element based on the strain gradient elasticity theory. Finite Elem. Anal. Des. 79, 22–39 (2014)

    Article  MathSciNet  Google Scholar 

  36. Wang B., Zhou S., Zhao J., Chen X.: A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur. J. Mech. A Solids 30, 517–524 (2011)

    Article  Google Scholar 

  37. Movassagh A.A., Mahmoodi M.J.: A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory. Eur. J. Mech. A Solids 40, 50–59 (2013)

    Article  MathSciNet  Google Scholar 

  38. Li A., Zhou S., Zhou S., Wang B.: A size-dependent model for bi-layered Kirchhoff micro-plate based on strain gradient elasticity theory. Compos. Struct. 113, 272–280 (2014)

    Article  Google Scholar 

  39. Sahmani S., Ansari R.: On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory. Compos. Struct. 95, 430–442 (2013)

    Article  Google Scholar 

  40. Ansari R., Gholami R., Faghih Shojaei M., Mohammadi V., Sahmani S.: Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory. Eur. J. Mech. A Solids 49, 251–267 (2015)

    Article  MathSciNet  Google Scholar 

  41. Zeighampour H., Tadi Beni Y.: Cylindrical thin-shell model based on modified strain gradient theory. Int. J. Eng. Sci. 78, 27–47 (2014)

    Article  MathSciNet  Google Scholar 

  42. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  43. Akgöz B., Civalek Ö.: Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater. Des. 42, 164–171 (2012)

    Article  Google Scholar 

  44. Akgöz B., Civalek Ö.: Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48, 863–873 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  45. Gao X.-L., Huang J.X., Reddy J.N.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224, 2699–2718 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  46. Jomehzadeh E., Noori H.R., Saidi A.R.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys. E 43, 877–883 (2011)

    Article  Google Scholar 

  47. Ke L.L., Wang Y.S., Yang J., Kitipornchai S.: Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J. Sound Vib. 331, 94–106 (2012)

    Article  Google Scholar 

  48. Ma H.M., Gao X.L., Reddy J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  49. Thai H.T., Choi D.H.: Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos. Struct. 95, 142–153 (2013)

    Article  Google Scholar 

  50. Thai H.T., Kim S.E.: A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos. Part B Eng. 45, 1636–1645 (2013)

    Article  Google Scholar 

  51. Thai H.T., Vo T.P.: A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory. Compos. Struct. 96, 376–383 (2013)

    Article  Google Scholar 

  52. Tsiatas G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  53. Yin L., Qian Q., Wang L., Xia W.: Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech. Solida Sin. 23, 386–393 (2010)

    Article  Google Scholar 

  54. Zhang B., He Y., Liu D., Gan Z., Shen L.: A non-classical Mindlin plate finite element based on a modified couple stress theory. Eur. J. Mech. A Solids 42, 63–80 (2013)

    Article  MathSciNet  Google Scholar 

  55. Touratier M.: An efficient standard plate theory. Int. J. Eng. Sci. 29, 901–916 (1991)

    Article  MATH  Google Scholar 

  56. Kahrobaiyan M.H., Asghari M., Ahmadian M.T.: Strain gradient beam element. Finite Elem. Anal. Des. 68, 63–75 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Civalek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akgöz, B., Civalek, Ö. A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech 226, 2277–2294 (2015). https://doi.org/10.1007/s00707-015-1308-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1308-4

Keywords

Navigation