Skip to main content
Log in

Nonlinear bending of size-dependent circular microplates based on the modified couple stress theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present study proposes a nonclassical Kirchhoff plate model for the axisymmetrically nonlinear bending analysis of circular microplates under uniformly distributed transverse loads. The governing differential equations are derived from the principle of minimum total potential energy based on the modified couple stress theory and von Kármán geometrically nonlinear theory in terms of the deflection and radial membrane force, with only one material length scale parameter to capture the size-dependent behavior. The governing equations are firstly discretized to a set of nonlinear algebraic equations by the orthogonal collocation point method, and then solved numerically by the Newton–Raphson iteration method to obtain the size-dependent solutions for deflections and radial membrane forces. The influences of length scale parameter on the bending behaviors of microplates are discussed in detail for immovable clamped and simply supported edge conditions. The numerical results indicate that the microplates modeled by the modified couple stress theory causes more stiffness than modeled by the classical continuum plate theory, such that for plates with small thickness to material length scale ratio, the difference between the results of these two theories is significantly large, but it becomes decreasing or even diminishing with increasing thickness to length scale ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma Q., Clarke D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  2. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  3. Lazopoulos K.A.: On bending of strain gradient elastic micro-plates. Mech. Res. Commun. 36, 777–783 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lazopoulos K.A.: On the gradient strain elasticity theory of plates. Eur. J. Mech. A. Solids 23, 843–852 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  6. Reddy J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507–1518 (2010)

    Article  MATH  Google Scholar 

  7. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  9. Koiter W.T.: Couple-stresses in the theory of elasticity: I and II. Proc. K. Ned. Akad. Wet. B 67, 17–44 (1964)

    MATH  Google Scholar 

  10. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  11. Park S.K., Gao X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  12. Reddy J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Xia W., Wang L., Yin L.: Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int. J. Eng. Sci. 48, 2044–2053 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Asghari M., Ahmadian M.T., Kahrobaiyan M.H., Rahaeifard M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31, 2324–2329 (2010)

    Article  Google Scholar 

  15. Ma H.M., Gao X.L., Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Asghari M., Kahrobaiyan M.H., Ahmadian M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Asghari M., Rahaeifard M., Kahrobaiyan M.H., Ahmadian M.T.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Des. 32, 1435–1443 (2011)

    Article  Google Scholar 

  18. Tsiatas G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  19. Jomehzadeh E., Noori H.R., Saidi A.R.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Physica E 43, 877–883 (2011)

    Article  Google Scholar 

  20. Asghari M.: Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int. J. Eng. Sci. 51, 292–309 (2012)

    Article  MathSciNet  Google Scholar 

  21. Ma H.M., Gao X.L., Reddy J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta. Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  22. Ke L.L., Wang Y.S., Yang J., Kitipornchai S.: Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J. Sound Vib. 331, 94–106 (2012)

    Article  Google Scholar 

  23. Chen W.J., Xu M., Li L.: A model of composite laminated Reddy plate based on new modified couple stress theory. Compos. Struct. 94, 2143–2156 (2012)

    Article  Google Scholar 

  24. Reddy J.N., Kim J.: A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos. Struct. 94, 1128–1143 (2012)

    Article  Google Scholar 

  25. Cosserat E., Cosserat F.: Théorie des corps déformables. Herman et Fils, Paris (1909)

    Google Scholar 

  26. Kapuria S., Dumir P.C.: Geometrically nonlinear axisymmetric response of thin circular plate under piezoelectric actuation. Commun. Nonlinear Sci. Numer. Simul. 10, 411–423 (2005)

    Article  MATH  Google Scholar 

  27. Haterbouch M., Benamar R.: Geometrically nonlinear free vibrations of simply supported isotropic thin circular plates. J. Sound Vib. 280, 903–924 (2005)

    Article  Google Scholar 

  28. Altenbach H., Eremeyev V.A.: On the linear theory of micropolar plates. Z. Angew. Math. Mech. 89, 242–256 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Altenbach H., Eremeyev V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49, 1294–1301 (2011)

    Article  MathSciNet  Google Scholar 

  30. Altenbach J., Altenbach H., Eremeyev V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)

    Article  MATH  Google Scholar 

  31. Nerantzaki M.S., Katsikadelis J.T.: Nonlinear dynamic analysis of circular plates with varying thickness. Arch. Appl. Mech. 77, 381–391 (2007)

    Article  MATH  Google Scholar 

  32. Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YG., Lin, WH. & Zhou, CL. Nonlinear bending of size-dependent circular microplates based on the modified couple stress theory. Arch Appl Mech 84, 391–400 (2014). https://doi.org/10.1007/s00419-013-0807-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0807-9

Keywords

Navigation