Skip to main content

Advertisement

Log in

An overview of the modelling of fracture by gradient damage models

  • 50th Anniversary of Meccanica
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The paper is devoted to gradient damage models which allow us to describe all the process of degradation of a body including the nucleation of cracks and their propagation. The construction of such model follows the variational approach to fracture and proceeds into two stages: (1) definition of the energy; (2) formulation of the damage evolution problem. The total energy of the body is defined in terms of the state variables which are the displacement field and the damage field in the case of quasi-brittle materials. That energy contains in particular gradient damage terms in order to avoid too strong damage localizations. The formulation of the damage evolution problem is then based on the concepts of irreversibility, stability and energy balance. That allows us to construct homogeneous as well as localized damage solutions in a closed form and to illustrate the concepts of loss of stability, of scale effects, of damage localization, and of structural failure. Moreover, the variational formulation leads to a natural numerical method based on an alternate minimization algorithm. Several numerical examples illustrate the ability of this approach to account for all the process of fracture including a 3D thermal shock problem where the crack evolution is very complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Reproduced from [17]

Fig. 8

Reproduced from [17]

Fig. 9
Fig. 10

Reproduced from [17]

Fig. 11
Fig. 12

Reproduced from [13]

Similar content being viewed by others

Notes

  1. In the thermal shock problem treated in the last section, the pre-strain is the thermal strain induced by the given temperature field which depends on time. Therefore, we will assume that \(\varvec{\varepsilon }^0\) is a given time-dependent field.

  2. The continuity of \(\alpha '\) at \(x_{0}\pm D\) is obtained as a first order optimality condition on \({\mathcal{P}}(u,\alpha )\).

  3. cracks being surfaces in dimension 3 and lines in dimension 2.

  4. Denoting by \((r,\theta )\) the polar coordinates and \((e_1, e_2)\) the Cartesian unit vectors,

    $${\bar{{\mathbf{U}}}} = \frac{K_I}{2\mu }\sqrt{\frac{r}{2\pi }}\left( \frac{3-\nu }{1+\nu }-\cos \theta \right) \left( \cos {({\theta }/{2})} e_1 + \sin ({\theta }/{2}) e_2\right),$$
    (86)

    where \(\mu\) is the shear modulus, and \(L_c\) is the length of the preexisting crack.

References

  1. Alessi R, Marigo J-J, Vidoli S (2014) Nucleation of cohesive cracks in gradient damage models coupled with plasticity. Arch Ration Mech Anal 214:575–615

    Article  MathSciNet  MATH  Google Scholar 

  2. Alessi R, Marigo J-J, Vidoli S (2015) Gradient damage models coupled with plasticity: variational formulation and main properties. Mech Mater 80:351–367

    Article  Google Scholar 

  3. Ambrosio L, Fusco N, Pallara D (2000) Functions of bounded variation and free discontinuity problems. Oxford Science Publications, Oxford Mathematical Monographs, Oxford

    MATH  Google Scholar 

  4. Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229

    Article  ADS  MATH  Google Scholar 

  5. Artina M, Fornasier M, Micheletti S, Perotto S (2015) Anisotropic mesh adaptation for crack detection in brittle materials. SIAM J Sci Comput 37(4):B633–B659

    Article  MathSciNet  MATH  Google Scholar 

  6. Bahr HA, Fischer G, Weiss HJ (1986) Thermal-shock crack patterns explained by single and multiple crack propagation. J Mater Sci 21:2716–2720

    Article  ADS  Google Scholar 

  7. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zhang H (2014) PETSc users manual. Technical Report ANL-95/11—Revision 3.5, Argonne National Laboratory

  8. Benallal A, Billardon R, Geymonat G (1993) Bifurcation and localization in rate independent materials. In: Nguyen Q (ed), C.I.S.M lecture notes on bifurcation and stability of dissipative systems, vol 327 of international centre for mechanical sciences, pp 1–44. Springer (1993)

  9. Benallal A, Marigo J-J (2007) Bifurcation and stability issues in gradient theories with softening. Model Simul Mater Sci Eng 15:S283–S295

    Article  ADS  Google Scholar 

  10. Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourdin B (2007) Numerical implementation of the variational formulation of quasi-static brittle fracture. Interfaces Free Bound 9:411–430

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourdin B, Francfort G, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bourdin B, Marigo J-J, Maurini C, Sicsic P (2014) Morphogenesis and propagation of complex cracks induced by thermal shocks. Phys Rev Lett 112(1):014301

    Article  ADS  Google Scholar 

  14. Braides A (1998) Approximation of free-discontinuity problems. Lecture notes in Mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  15. Comi C (1999) Computational modelling of gradient-enhanced damage in quasi-brittle materials. Mech Cohes Frict Mater 4(1):17–36

    Article  Google Scholar 

  16. Comi C, Perego U (2001) Fracture energy based bi-dissipative damage model for concrete. Int J Solids Struct 38(36–37):6427–6454

    Article  MATH  Google Scholar 

  17. Farrell P, Maurini C (2016) Linear and nonlinear solvers for variational phase-field models of brittle fracture. Int J Numer Methods Eng. doi:10.1002/nme.5300

    Google Scholar 

  18. Farrell P, Maurini C (2016) Solvers for variational damage and fracture. https://bitbucket.org/pefarrell/varfrac-solvers

  19. Francfort G, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: a unified approach. J Mech Phys Solids 58:1154–1174

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Geyer J, Nemat-Nasser S (1982) Experimental investigations of thermally induced interacting cracks in brittle solids. Int J Solids Struct 18(4):137–356

    Article  Google Scholar 

  22. Giacomini A (2005) Ambrosio–Tortorelli approximation of quasi-static evolution of brittle fractures. Calc Var Partial Differ Equ 22:129–172

    Article  MathSciNet  MATH  Google Scholar 

  23. Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57:342–368

    Article  ADS  MATH  Google Scholar 

  24. Hossain M, Hsueh C-J, Bourdin B, Bhattacharya K (2014) Effective toughness of heterogeneous media. J Mech Phys Solids 71:15–32

    Article  ADS  MathSciNet  Google Scholar 

  25. Karma A, Kessler DA, Levine H (2001) Phase-field model of mode iii dynamic fracture. Phys Rev Lett 87:045501

    Article  ADS  Google Scholar 

  26. Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77(18):3625–3634 (Computational mechanics in fracture and damage: a special issue in Honor of Prof. Gross)

    Article  Google Scholar 

  27. Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. A practical application to the French Panthéon in Paris. J Elast 95:1–30

    Article  MathSciNet  MATH  Google Scholar 

  28. Li B, Peco C, Millán D, Arias I, Arroyo M (2014) Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int J Numer Methods Eng 102(3–4):711–727

    MathSciNet  Google Scholar 

  29. Logg A, Mardal K-A, Wells G N et al (2012) Automated solution of differential equations by the finite element method. Springer, Berlin

    Book  MATH  Google Scholar 

  30. Lorentz E, Andrieux S (2003) Analysis of non-local models through energetic formulations. Int J Solids Struct 40:2905–2936

    Article  MathSciNet  MATH  Google Scholar 

  31. Marigo J-J (1989) Constitutive relations in plasticity, damage and fracture mechanics based on a work property. Nucl Eng Design 114:249–272

    Article  Google Scholar 

  32. Maurini C (2013) Fenics codes for variational damage and fracture. https://bitbucket.org/cmaurini/varfrac_for_cism

  33. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42:577–685

    Article  MathSciNet  MATH  Google Scholar 

  35. Peerlings R, de Borst R, Brekelmans W, de Vree J, Spee I (1996) Some observations on localisation in non-local and gradient damage models. Eur J Mech A Solids 15:937–953

    MATH  Google Scholar 

  36. Peerlings R, de Borst R, Brekelmans W, Geers M (1998) Gradient-enhanced damage modelling of concrete fracture. Mech Cohes Frict Mater 3:323–342

    Article  MATH  Google Scholar 

  37. Pham K, Amor H, Marigo J-J, Maurini C (2011) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20(4):618–652

    Article  Google Scholar 

  38. Pham K, Marigo J-J (2010) Approche variationnelle de l’endommagement: I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198

    Article  ADS  Google Scholar 

  39. Pham K, Marigo J-J (2010) Approche variationnelle de l’endommagement: II. Les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206

    Article  ADS  Google Scholar 

  40. Pham K, Marigo J-J (2013) From the onset of damage until the rupture: construction of the responses with damage localization for a general class of gradient damage models. Continuum Mech Thermodyn 25(2–4):147–171

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Pham K, Marigo J-J (2013) Stability of homogeneous states with gradient damage models: size effects and shape effects in the three-dimensional setting. J Elast 110(1):63–93 (Isiweb)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pham K, Marigo J-J, Maurini C (2011) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. J Mech Phys Solids 59(6):1163–1190 (Isiweb)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Pons A, Karma A (2010) Helical crack-front instability in mixed mode fracture. Nature 464:85–89

    Article  ADS  Google Scholar 

  44. Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141

    Article  MathSciNet  MATH  Google Scholar 

  45. Shao Y, Xu X, Meng S, Bai G, Jiang C, Song F (2010) Crack patterns in ceramic plates after quenching. J Am Ceram Soc 93(10):3006–3008

    Article  Google Scholar 

  46. Sicsic P, Marigo J-J (2013) From gradient damage laws to Griffith’s theory of crack propagation. J Elast 113(1):55–74

    Article  MathSciNet  MATH  Google Scholar 

  47. Sicsic P, Marigo J-J, Maurini C (2014) Initiation of a periodic array of cracks in the thermal shock problem: a gradient damage modeling. J Mech Phys Solids 63:256–284

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Marigo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marigo, JJ., Maurini, C. & Pham, K. An overview of the modelling of fracture by gradient damage models. Meccanica 51, 3107–3128 (2016). https://doi.org/10.1007/s11012-016-0538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0538-4

Keywords

Navigation