Skip to main content
Log in

The Variational Approach to Fracture Mechanics. A Practical Application to the French Panthéon in Paris

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Recently, Francfort and Marigo (J. Mech. Phys. Solids 46, 1319–1342, 1998) have proposed a novel approach to fracture mechanics based upon the global minimization of a Griffith-like functional, composed of a bulk and a surface energy term. Later on the same authors, together with Bourdin, introduced (in J. Mech. Phys. Solids 48, 797–826, 2000) a variational approximation (in the sense of Γ-convergence) of such functional, essentially for computational purposes.

Here, we utilize this new variational approach to show how it might be altered to incorporate the idea of less brittle, “deviatoric-type fracture” and apply to materials such as confined stone. To do so, we modify the original formulation of Francfort and Marigo, in particular its approximation of Bourdin, Francfort and Marigo, to only allow for discontinuities in the deviatoric part of the strain. We apply such modified model to gain insight on the deterioration and cracking in the ashlar masonry work of the French Panthéon, which are so repetitious and particular to be a distinguishable symptom of ongoing damage. Numerical experiments are performed and the results compared to those obtained using the original Francfort-Marigo model and to actual crack patterns from the Panthéon.

The modified formulation allows one to reproduce fracture paths surprisingly similar to that observed in situ, to sort out the possible causes of damage, and to confirm, with a quantitative analysis, the main structural deficiencies in the French monument. This practical example enhances the importance of this promising new theory based in the mathematical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Braides, A.: Energies in SBV and variational models in fracture mechanics. In: Proceedings of the EurHomogenization Congress, Nizza. Gakuto Int. Series. Math. Sci. Appl. 9, 1–22 (1997)

  2. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. XLIII, 999–1036 (1990)

    Article  MathSciNet  Google Scholar 

  3. Bancon, M.: Rapport technique du 10 juin 1991. Bureau Michel Bancon, Etude n. 1360, Paris (1991)

  4. Baptiste, H.: Six ans au chevet d’un grand malade. In: LE PANTHÉON Symbole des révolutions, pp. 270–280. Picard Éditeur, Paris (1989)

    Google Scholar 

  5. Bažant, Z., Planas, S.T.: Fracture and Size-Effect in Concrete and other Quasi-Brittle Materials. CRC Press, New York (1998)

    Google Scholar 

  6. Bellettini, G., Coscia, A.: Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15, 201–224 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bourdin, B.: Numerical implementation of the variational formulation of quasi-static brittle fracture. Interfaces Free Bound. 9, 411–430 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Braides, A.: Gamma Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  10. Chambolle, A.: An approximation result for special functions with bounded deformation. J. Math. Pures Appl., Ser. IX 83, 929–954 (2004)

    MathSciNet  Google Scholar 

  11. Charlotte, M., Laverne, J., Marigo, J.J.: Initiation of cracks with cohesive force models: a variational approach. Eur. J. Mech. A/Solids 25, 649–669 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Comité Euro-International du Béton: CEB/FIP Model Code (Design Code). Thomas Telford, London (1993)

    Google Scholar 

  13. Dal Pino, R., Narducci, P., Royer-Carfagni, G.: A SEM investigation on fatigue damage of marble. J. Mater. Sci. Lett. 18, 1619–1622 (1999)

    Article  Google Scholar 

  14. De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108, 195–218 (1989)

    Article  MATH  Google Scholar 

  15. Del Piero, G., Lancioni, G., March, R.: A variational model for fracture mechanics: numerical experiments. J. Mech. Phys. Solids 55, 2513–2537 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Gauthey, E.M.: Dissertation sur les dégradations survenues aux piliers du dôme du Panthéon Française et sur les moyens d’y remédier. Perroneau, Paris (1798)

  18. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)

    Article  ADS  Google Scholar 

  19. Guillerme, J.: Le Panthéon: une matière à controverse. In: LE PANTHEON Symbole des révolutions, pp. 151–173. Picard Éditeur, Paris (1989)

    Google Scholar 

  20. Gurtin, M.E.: The Linear Theory of Elasticity. Handbuch Der Physik. Springer, Berlin (1972)

    Google Scholar 

  21. Heymain, J.: The crossing piers of the French Panthéon. Struct. Eng. 64, 230–234 (1985)

    Google Scholar 

  22. Hilsdorf, H.K., Brameshuber, W.: Code-type formulation of fracture mechanics concepts for concrete. Int. J. Fract. 51, 61–72 (1991)

    Article  Google Scholar 

  23. Kachanov, L.M.: On the life-time under creep conditions. Izv. Akad. Nauk SSSR 8, 26–31 (1958), in Russian

    Google Scholar 

  24. Labuz, J.F., Dai, S.T.: Residual strength and fracture energy from plane-strain testing. ASCE J. Geotech. Geoenviron. Eng. 126, 882–889 (2000)

    Article  Google Scholar 

  25. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. XLII, 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  26. Nadai, A.: Theory of Flow and Fracture of Solids. McGraw-Hill, New York (1950)

    Google Scholar 

  27. Rondelet, J.: Mémoire historique sur le dôme du Panthéon Français. Du Pont, Paris (1797)

    Google Scholar 

  28. Rondelet, J.: Traité théorique et pratique de l’art de bâtir, 7th edn. Paris (1834)

  29. Yao, J., Teng, J.G., Chen, J.F.: Experimental study on FRP-to-concrete bonded joints. Composites, Part B 36, 99–113 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Royer-Carfagni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lancioni, G., Royer-Carfagni, G. The Variational Approach to Fracture Mechanics. A Practical Application to the French Panthéon in Paris. J Elasticity 95, 1–30 (2009). https://doi.org/10.1007/s10659-009-9189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-009-9189-1

Keywords

Mathematics Subject Classification (2000)

Navigation