Skip to main content
Log in

β-Cyclodextrin inclusion complexes of lisinopril and zofenopril

physicochemical characterization and compatibility study of lisinopril-β-cyclodextrin with lactose

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Lisinopril is an angiotensin-converting enzyme inhibitor, exhibiting reduced absorption and bioavailability following oral administration and instability in the presence of lactose. Zofenopril, one of the newest therapeutic agents of the same class, is a highly lipophilic drug with low water solubility. Inclusion complexes between the drug substances and β-cyclodextrin (β-CD) were obtained to improve their solubility, bioavailability, and stability. The purpose of this study was to investigate the guest–host interaction of lisinopril dihydrate (LIS) and zofenopril calcium (ZOF) with β-CD in solid state and in aqueous solution in order to prove the formation of inclusion complexes between the components. The inclusion complexes were prepared using the kneading method, and they were investigated with different analytical technique, including thermal analysis, powder X-ray diffractometry (PXRD), Fourier transform infrared spectroscopy (FTIR), and UV spectroscopy. All these techniques revealed that LIS and ZOF form inclusion complexes with β-CD both in solution and in solid state. The stoichiometry of the inclusion complexes was found to be 1:1 for both drug substances, and the apparent constant stability was calculated as 615.86 and 375.85 M−1 for LIS and ZOF, respectively. The compatibility between the binary system LIS/β-CD and lactose 1:1 (m/m) has been studied by means of thermogravimetry/derivative thermogravimetry, differential thermal analysis and FTIR spectroscopy. As a result of the encapsulation of LIS in the β-CD cavity, the stabilization of drug substance in the presence of lactose has been realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chase SL, Sutton JD. Lisinopril: a new angiotensin-converting enzyme inhibitor. Pharmacotherapy. 1989;9(3):120–8.

    Article  CAS  Google Scholar 

  2. Ferrar R, Guardigli G, Mele D, Valgimigli M, Ceconi C. Myocardial ischemia: new evidence for angiotensin-converting enzyme inhibition. Eur Heart J Suppl. 2003;5(Supplement E):E11–7.

    Article  Google Scholar 

  3. Remko M. Acidity, lipophilicity, solubility, absorbtion, and polar surface area of some ACE inhibitors. Chem Pap. 2007;61(2):133–41.

    Article  CAS  Google Scholar 

  4. Subissi A, Evangelista S, Giachetti A. Preclinical profile of zofenopril: an angiotensin converting enzyme inhibitor with pelicular cardioprotective properties. Cardiovasc Drug Rev. 1999;17(2):115–33.

    Article  CAS  Google Scholar 

  5. Evangelista S, Manzini S. Antioxidant and cardioprotective properties of sulphydryl angiotensin-converting enzyme inhibitor zofenopril. J Int Med Res. 2005;33(1):42–54.

    Article  CAS  Google Scholar 

  6. Borghi C, Cicero AFG, Ambrosioni E. Effects of early treatment with zofenopril in patients with myocardial infarction and metabolic syndrome: the SMILE study. Vasc Health Risk Manag. 2008;4:665–71.

    CAS  Google Scholar 

  7. Lozano R, Joseph JM, Kline BJ. Temperature, pH and agitation rate as dissolution test discriminators of zofenopril calcium tablets. J Pharm Biomed Anal. 1994;12(2):173–7.

    Article  CAS  Google Scholar 

  8. Saifee M, Inamdar N, Dhamecha D, Rathi A. Drug polymorphism: a review. Int J Health Res. 2009;2(4):291–306.

    CAS  Google Scholar 

  9. Loftsson T, Jarho P, Masson M, Jarvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2:335–51.

    Article  CAS  Google Scholar 

  10. Loftson T, Hreinsdottir D, Masson M. Evaluation of cyclodextrin solubilisation of drugs. Int J Pharm. 2005;302:18–28.

    Article  Google Scholar 

  11. Sbârcea L, Udrescu L, Drăgan L, Trandafirescu C, Szabadai Z, Bojiţă M. Fosinopril–cyclodextrin inclusion complexes: phase solubility and physicochemical analysis. Pharmazie. 2011;66:584–9.

    Google Scholar 

  12. Soares-Sobrino JL, de La Roca Soares FM, Rolim-Neto PJ, Torres-Labandeira JJ. Physicochemical study of solid-state benznidazole-cyclodextrin complexes. J Therm Anal Calorim. 2011;106:319–25.

    Article  Google Scholar 

  13. Aigner Z, Berkesi O, Farkas G, Szabo-Revesz P. DSC, X-ray and FTIR studies of a gemfibrozil/dimethyl-β-cyclodextrin inclusion complex produced by co-grinding. J Pharm Biomed Anal. 2012;57:62–7.

    Article  CAS  Google Scholar 

  14. Lin HN, Lin SY, Lin CC, Hsu CH, Wu TK, Huang YT. Mechanical grinding effect on thermodynamics and inclusion efficiency of loratadine-cyclodextrin inclusion complex formation. Carbohydr Polym. 2012;87:512–7.

    Article  CAS  Google Scholar 

  15. Aramă C, Nicolescu C, Nedelcu A, Monciu CM. Synthesis and characterisation of the inclusion complex between repaglinide and sulfobutylether-β-cyclodextrin (Captisol®). J Incl Phenom Macrocycl Chem. 2011;70:421–8.

    Article  Google Scholar 

  16. Olaru A, Borodi Gh, Kacso I, Vasilescu M, Bratu I, Cozar O. Spectroscopic studies of the inclusion compound of lisinopril with β-cyclodextrin. Spectroscopy. 2009;23:191–9.

    Article  CAS  Google Scholar 

  17. Bratu I, Kacso I, Borodi Gh, Constantinescu DE, Drăgan F. Inclusion compound of Fosinopril with β-cyclodextrin. Spectroscopy. 2009;23:51–8.

    Article  CAS  Google Scholar 

  18. Sbârcea L, Ledeţi I, Drăgan L, Kurunczi L, Fuliaş A, Udrescu L. Fosinopril sodium–hydroxypropyl-β-cyclodextrin inclusion complex. Thermal decomposition kinetics and compatibility studies. J Therm Anal Calorim. 2015;120:981–90.

    Article  Google Scholar 

  19. Doile MM, Fortunato KA, Schműcker IC, Schucko SK, Silva MAS, Rodrigues PO. Physicochemical properties and dissolution studies of dexamethasone acetate- β-Cyclodextrin inclusion complexes produced by different methods. AAPS PharmSciTech. 2008;9:314–21.

    Article  CAS  Google Scholar 

  20. Fuliaş A, Vlase G, Şoica C, Bercean V, Vlase T, Ledeţi I. Thermal behaviour of a modified encapsulation agent. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-3727-1.

    Google Scholar 

  21. Fuliaş A, Ledeţi I, Vlase G, Popoiu C, Hegheş A, Bilanin M, Vlase T, Gheorgheosu D, Craina M, Ardelean S, Ferechide D, Mărginean O, Moş L. Thermal behaviour of procaine and benzocaine Part II: compatibility study with some pharmaceutical excipients used in solid dosage forms. Chem Cent J. 2013;7:140.

    Article  Google Scholar 

  22. Fuliaş A, Ledeţi I, Vlase G, Vlase T. Physico-chemical solid-state characterization of pharmaceutical pyrazolones: an unexpected thermal behaviour. J Pharm Biomed Anal. 2013;81–82:44–9.

    Article  Google Scholar 

  23. Monajjemzadeh F, Hassanzadeh D, Valizadeh H, Siahi-Shadbad MR, Mojarrad JS, Robertson TA, Roberts MS. Compatibility studies of acyclovir and lactose in physical mixtures and commercial tablets. Eur J Pharm Biopharm. 2009;73:404–13.

    Article  CAS  Google Scholar 

  24. Oliveira PR, Stulzer HK, Bernardi LS, Borgmann SHM, Cardoso SG, Silva MAS. Sibutramine hydrochloride monohydrate thermal bahavior, decomposition kinetics and compatibility studies. J Therm Anal Calorim. 2010;100:277–82.

    Article  CAS  Google Scholar 

  25. Aigner Z, Heinrich R, Sipos E, Farkas G, Ciurba A, Berkesi O, Szabό-Révész P. Compatibility studies of aceclofenac with retard tablet excipients by mean of thermal and FT-IR spectroscopic methods. J Therm Anal Calorim. 2011;104:265–71.

    Article  CAS  Google Scholar 

  26. Veronez IP, Daniel JSP, Garcia JS, Trevisan MG. Caracterization and compatibility study of desloratadine. J Therm Anal Calorim. 2014;115:2407–14.

    Article  CAS  Google Scholar 

  27. Peres-Filho MJ, Gaeti MPN, de Oliveira SR, Marreto RN, Lima EM. Thermoanalytical investigation of olanzapine compatibility with excipients used in solid oral dosage forms. J Therm Anal Calorim. 2011;104:255–60.

    Article  CAS  Google Scholar 

  28. Bertol CD, Cruz AP, Stulzer HK, Murakami FS, Silva MAS. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2010;102:187–92.

    Article  CAS  Google Scholar 

  29. Stulzer HK, Rodrigues PO, Cardoso TM, Matos JSR, Silva MAS. Compatibility studies between captopril and pharmaceutical excipients used in tablet formulations. J Therm Anal Calorim. 2008;91:323–8.

    Article  CAS  Google Scholar 

  30. Bernardi LS, Oliveira PR, Murakami FS, Silva MAS, Borgmann SHM, Cardoso SG. Characterisation of venlafaxine hydrochloride and compatibility study with pharmaceutical excipients. J Therm Anal Calorim. 2009;97:729–33.

    Article  CAS  Google Scholar 

  31. Fuliaş A, Valse T, Vlase G, Szabadai Z, Rusu G, Bandur G, Tiţa D, Doca N. Thermoanalytical study of cefadroxil and its mixture with different excipients. Rev Chim (Bucharest). 2010;61:1202–6.

    Google Scholar 

  32. Santos AFO, Basílio ID Jr, de Souza FS, Medeiros AFD, Pinto MF, de Santana DP, Macêdo RO. Application of thermal analysis in study of binary mixture with metformin. J Therm Anal Calorim. 2008;93:361–4.

    Article  CAS  Google Scholar 

  33. Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010;1(3):3–26.

    CAS  Google Scholar 

  34. Szejtli J. Past, present and futute of cyclodextrin research. Pure Appl Chem. 2004;76(10):1825.

    Article  CAS  Google Scholar 

  35. Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1–2):1–11.

    Article  CAS  Google Scholar 

  36. Salústio J, Feio G, Figueirinhas JL, Pinto JF, Marques HC. The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity. Eur J Pharm Biopharm. 2009;71:377–86.

    Article  Google Scholar 

  37. Udrescu L, Sbârcea L, Fuliaş A, Ledeţi I, Vlase G, Barvinschi P, Kurunczi L. Physicochemical analysis and molecular modeling of the fosinopril β-Cyclodextrin inclusion complex. J Spectrosc. 2014 (Spetrosc-Int J). (2014);748468.

  38. Misiuk W, Zalewska M. Investigation of inclusion complex of trazodone hydrochloride with hydroxypropyl-β-cyclodextrin. Carbohydr Polym. 2009;77(3):482–8.

    Article  CAS  Google Scholar 

  39. Benesi HA, Hildebrand JH. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc. 1949;71(8):2703–7.

    Article  CAS  Google Scholar 

  40. Higuchi T, Connors KA. Phase solubility technique. Adv Anal Chem Instrum. 1965;4:117–212.

    CAS  Google Scholar 

  41. Liu L, Zhu S. Preparation and characterization of inclusion complexes of prazosin hydrochloride with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J Pharm Biomed Anal. 2006;40:122–7.

    Article  CAS  Google Scholar 

  42. Sreenivasa RK, Udgirkar DB, Mule DD. Enhancement of dissolution rate and bioavailability of aceclofenac by complexation with cyclodextrin. RJPBCS. 2010;1(4):142–51.

    Google Scholar 

  43. Brittain HG, Florey K. Analytical profile of drug substances and excipients, vol. 21. Waltham: Academic Press Inc; 1992. p. 240.

    Google Scholar 

  44. Ručman R, Zupet P. New crystal salts of zofenopril, process for obtaining them and their use in therapy. Patent no WO2013095307 A1 2013. Available at http://www.google.com/patents/WO2013095307A1?cl=en.

  45. Udrescu L, Sbârcea L, Fulia A, Ledei I, Vlase T, Barvinschi P, Kurunczi L. Physicochemical characterization of zofenopril inclusion complex with hydroxypropyl-β-cyclodextrin. J Serb Chem Soc. 2015;80(4):485–97.

    Article  CAS  Google Scholar 

  46. Udrescu L, Fuliaş A, Ledeţi I, Vlase G, Barvinschi P, Kurunczi L, Sbârcea L. Host-guest system of zofenopril and randomly methylated β-cyclodextrin. Rev Chim (Bucharest). 2015;66(1):17–20.

    CAS  Google Scholar 

  47. Job P. Formation and stability of inorganic complexes in solution. Ann Chim. 1928;9:113–203.

    CAS  Google Scholar 

  48. Iacovino R, Caso JV, Rapuano F, Russo A, Isidori M, Lavorgna M, Malgieri G, Isernia C. Physicochemical characterization and cytotoxic activity evaluation of hydroxymethylferrocene: β-czyclodextrin inclusion complex. Molocules. 2012;17:6056–70.

    Article  CAS  Google Scholar 

  49. Vandelli MA, Ruozi B, Forni F, Mucci A, Salvioli G, Galli E. A solution and solid state study on 2-hydroxypropil-β-cyclodextrin complexation with hyodeoxycholic acid. J Incl Phenom Macrocycl Chem. 2000;37:237–51.

    Article  CAS  Google Scholar 

  50. Sbârcea L, Udrescu L, Drăgan L, Trandafirescu C, Bojiţă M. Validated UV spectrophotometric method For quantification Of zofenopril in pharmaceutical formulation. Rev Chim (Bucharest). 2012;63(6):562–4.

    Google Scholar 

  51. Eyjolfsson R. Lisinopril-lactose incompatibility. Drug Dev Ind Pharm. 1998;24:797–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Fuliaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbârcea, L., Udrescu, L., Ledeţi, I. et al. β-Cyclodextrin inclusion complexes of lisinopril and zofenopril. J Therm Anal Calorim 123, 2377–2390 (2016). https://doi.org/10.1007/s10973-015-5045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5045-7

Keywords

Navigation