Skip to main content
Log in

Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Primaquine (PQ) is the drug of choice for the radical cure of Plasmodium vivax malaria, and currently being administered in solid dosage form. In this study, the compatibility studies were carried out using differential scanning calorimetry (DSC), thermogravimetry (TG), and fourier transformed infrared (FT-IR). Non-isothermal and isothermal methods were employed to investigate kinetic parameters under nitrogen and air atmospheres using TG. The DSC investigations obtained by physical mixtures showed slight alterations in the melting temperatures of PQ with some excipients. The FT-IR confirmed the possible interactions obtained by DSC for the physical mixtures with PQ and lactose, magnesium stearate and mannitol. The results showed that the thermal decomposition followed a zero order kinetic in both atmospheres in non-isothermal method. The activation energy in both methods using nitrogen atmosphere was similar, and in air atmosphere the activation energy decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Baird JK, Fryauff DJ, Hoffman SL. Primaquine for prevention of malaria in travelers. Clin Infect Dis. 2003;37:1659–67.

    Article  CAS  Google Scholar 

  2. Vale N, Moreira R, Gomes P. Primaquine revisited six decades after its discovery. Eur J Med Chem. 2009;44:937–53.

    Article  CAS  Google Scholar 

  3. Bhadra A, Yadav K, Bhadra S, Jain NK. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int J Pharm. 2005;295:221–33.

    Article  CAS  Google Scholar 

  4. Gaspar R, Prat V, Roland M. Nanoparticles of polyisohexylcyanoacrylate (PIHCA) as carriers of primaquine: formulation, physico-chemical characterization and acute toxicity. Int J Pharm. 1991;68:111–9.

    Article  CAS  Google Scholar 

  5. Green MD, D’Souza MJ, Holbrook JM, Wirtz RA. In vitro and in vivo evaluation of albumin-encapsulated primaquine diphosphate prepared by nebulization into heated oil. J Microencapsul. 2004;21:433–44.

    Article  CAS  Google Scholar 

  6. Mayorga P, Puisieux F, Couarraze G. Formulation study of a transdermal delivery system of primaquine. Int J Pharm. 1996;132:71–9.

    Article  CAS  Google Scholar 

  7. Jackson K, Young D, Pant S. Drug-excipient interaction and their affect on absorption. Res Focus. 2000;3:336–45.

    CAS  Google Scholar 

  8. Mura P, Faucci MT, Manderioli A, Bramanti G, Ceccarelli L. Compatibility study between ibuproxam and pharmaceutical excipients using differential scanning calorimetry, hot-stage microscopy and scanning electron microscopy. J Pharm Biomed Anal. 1998;18:151–63.

    Article  CAS  Google Scholar 

  9. Cides LCS, Araújo AAS, Santos-Filho M, Matos JR. Thermal behavior, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2006;84:441–5.

    Article  CAS  Google Scholar 

  10. Nunes RS, Semaan FS, Riga AT, Cavalheiro ETG. Thermal behavior of verapamil hydrocholide and its association with excipients. J Therm Anal Calorim; 2009. doi:10.1007/s10973-009-0072-x.

  11. Giron D. Contribution of thermal methods and related techniques to the rational development of pharmaceuticals, Part 1. PSTT. 1998;1:191–9.

    CAS  Google Scholar 

  12. Giron D. Contribution of thermal methods and related techniques to the rational development of pharmaceuticals, Part 2. PSTT. 1998;1:262–8.

    CAS  Google Scholar 

  13. Silva MAS, Kelmann RG, Foppa T, Cruz AP, Bertol CD, Sartori T, et al. Thermoanalytical study of fluoxetine hydrochloride. J Therm Anal Calorim. 2007;87:463–7.

    Article  CAS  Google Scholar 

  14. Stulzer HK, Rodrigues PO, Cardoso TM, Matos JSR, Silva MAS. Compatibility studies between captopril and pharmaceutical excipients used in tablets formulations. J Therm Anal Calorim. 2008;91:323–8.

    Article  CAS  Google Scholar 

  15. Sashina ES, Janowska G, Zaborski M, Vnuchkin AV. Compatibility of fibroin/chitosan and fibroin/cellulose blends studied by thermal analysis. J Therm Anal Calorim. 2007;89:887–91.

    Article  CAS  Google Scholar 

  16. Gennaro AR. Remington’s the pharmaceutical sciences and practice of pharmacy. Philadelphia: Lippincott, Williams & Wilkins; 2004.

    Google Scholar 

  17. Mura P, Gratteri P, Faucci MT. Compatibility studies of multicomponent tablet formulations DSC and experimental mixture design. J Therm Anal Calorim. 2002;68:541–51.

    Article  CAS  Google Scholar 

  18. Kiss D, Zelkó R, Novak CS, Éhen ZS. Application of DSC and NIRS to study the compatibility of metronidazole with different pharmaceutical excipients. J Therm Anal Calorim. 2006;84:447–51.

    Article  CAS  Google Scholar 

  19. Bruni G, Amici L, Berbenni V, Marini A, Orlandi A. Drug-excipient compatibility studies: search of interaction indicators. J Therm Anal Calorim. 2002;68:561–73.

    Article  CAS  Google Scholar 

  20. Felix FS, Cides LCS, Angnes L, Matos JR. Thermal behavior study and decomposition kinetics of salbutamol under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2009;95:877–80.

    Article  CAS  Google Scholar 

  21. Burnham L, Dollimore D, Alexander K. Kinetic study of the drug acetazolamide using thermogravimetry. Thermochim Acta. 2002;392:127–33.

    Article  Google Scholar 

  22. Ozawa T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355:35–42.

    Article  CAS  Google Scholar 

  23. Al-Badr AA. Primaquine diphosphate: comprehensive profile. Profiles Drug Subst Excipients Relat Methodol. 2005;32:153–207.

    Article  CAS  Google Scholar 

  24. British Pharmacopoeia. 3ed. London; 1999.

  25. Verma RK, Garg S. Selection of excipients for extended release formulations of glipizide through drug-excipient compatibility testing. J Pharm Biomed Anal. 2005;38:633–44.

    Article  CAS  Google Scholar 

  26. Oliveira GGG, Ferraz HFG, Matos JSR. Thermoanalytical study of glibenclamide and excipients. J Therm Anal Calorim. 2005;79:267–70.

    Article  CAS  Google Scholar 

  27. Lerdkanchanaporn S, Dollimore D, Alexander KS. A thermogravimetric study of ascorbic acid and its excipients in pharmaceutical formulations. Thermochimica Acta. 1996;284:115–26.

    Article  CAS  Google Scholar 

  28. Bugay DE. Characterization of the solid-state: 2. Spectroscopic techniques. Adv Drug Deliv Rev. 2001;48:43–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Bertol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertol, C.D., Cruz, A.P., Stulzer, H.K. et al. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim 102, 187–192 (2010). https://doi.org/10.1007/s10973-009-0540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0540-3

Keywords

Navigation