Skip to main content
Log in

Mixing properties of the one-atom maser

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the relaxation properties of the quantized electromagnetic field in a cavity under repeated interactions with single two-level atoms, so-called one-atom maser. We improve the ergodic results obtained in Bruneau and Pillet (J Stat Phys 134(5–6):1071–1095, 2009) and prove that, whenever the atoms are initially distributed according to the canonical ensemble at temperature \(T>0\), all the invariant states are mixing. Under some non-resonance condition this invariant state is known to be thermal equilibirum at some renormalized temperature \(T^*\) and we prove that the mixing is then arbitrarily slow, in other words that there is no lower bound on the relaxation speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(c_0\) denotes the Banach space of complex sequences which converge to \(0\) (endowed with the \(\ell ^\infty \) norm).

References

  1. Attal, S., Joye, A.: Weak coupling and continuous limits for repeated quantum interactions. J. Stat. Phys. 126, 1241–1283 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Attal, S., Joye, A., Pillet, C.-A. (eds.): Open Quantum Systems I-III. Lecture Notes in Mathematics, pp. 1880–1882. Springer, Berlin (2006)

    Google Scholar 

  3. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.A.: Topics in nonequilibrium quantum statistical mechanics. In AJP, vol. III, p. 1

  4. Bayfield, J.E.: Quantum Evolution. An Introduction to Time-Dependent Quantum Mechanics. Wiley, New York (1999)

    Google Scholar 

  5. Bach, V., Fröhlich, J., Sigal, M.: Return to equilibrium. J. Math. Phys. 41(6), 3985–4060 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Badea, C., Grivaux, S., Müller, V.: The rate of convergence in the method of alternating projections, Algebra i Analiz, vol. 3, pp. 1–30 (2011) (trans St. Petersburg, Math. J.)

  7. Badea, C., Grivaux, S., Müller, V.: The rate of convergence in the method of alternating projections. Algebra i Analiz 23(3), 413–434 (2012)

    MATH  MathSciNet  Google Scholar 

  8. Bruneau, L., Joye, A., Merkli, M.: Asymptotics of repeated interaction quantum systems. J. Func. Anal. 239, 310–344 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bruneau, L., Joye, A., Merkli, M.: Random repeated interaction quantum systems. Commun. Math. Phys. 284, 553–581 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bruneau, L., Joye, A., Merkli, M.: Repeated interactions in open quantum systems, To appear in J. Math. Phys., Special issue Proceedings of the Summer School “Non-equilibrium Statistical Mechanics” held at CRM-Montreal

  11. Bruneau, L., Pillet, C.A.: Thermal relaxation of a QED cavity. J. Stat. Phys. 134(5–6), 1071–1095 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Carbone, R., Fagnola, F.: Exponential L2-convergence of quantum Markov semigroups on B(H). Math. Notes 68(3–4), 452–463 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cohen-Tannoudji, C., Dupont-Roc, J., Grinberg, G.: Atom Photon Interact. Wiley, New York (1992)

    Google Scholar 

  14. Davidovich, L., Raimond, J.M., Brune, M., Haroche, S.: Quantum theory of a two-photon micromaser. Phys. Rev. A 36, 3771–3787 (1987)

    Article  ADS  Google Scholar 

  15. Dereziński, J., Jakšić, V.: Return to equilibrium for Pauli–Fierz systems. Ann. H. Poincaré 4, 739–793 (2003)

    Article  MATH  Google Scholar 

  16. Dutra, S.M.: Cavity Quantum Electrodynamics. Wiley, New York (2005)

    Google Scholar 

  17. Filipowicz, P., Javanainen, J., Meystre, P.: Theory of a microscopic maser. Phys. Rev. A 34(4), 3077–3087 (1986)

    Article  ADS  Google Scholar 

  18. Filipowicz, P., Javanainen, J., Meystre, P.: Quantum and semiclassical steady states of a kicked cavity mode. J. Opt. Soc. Am. B 3(6), 906–910 (1986)

    Article  ADS  Google Scholar 

  19. Fröhlich, J., Merkli, M.: Another return of “return to equilibrium”. Commun. Math. Phys. 251(2), 235–262 (2004)

    Article  ADS  MATH  Google Scholar 

  20. Gleyzes, S., Kuhr, S., Guerlin, C., Bemu, J., Deleglise, S., Hoff, U.B., Brune, M., Raimond, J.-M., Haroche, S.: Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007)

    Article  ADS  Google Scholar 

  21. Guţa, M., van Horssen, M.: Large deviations and quantum dynamical phase transitions for the atom maser, Preprint arXiv:1206.4956

  22. Jakšić, V., Pillet, C.-A.: On a model for quantum friction III. Ergodic properties of the spin-boson system. Commun. Math. Phys. 178(3), 627–651 (1996)

    Article  ADS  MATH  Google Scholar 

  23. Kato, T.: Perturbation theory for linear operators. Springer, New-York (1966)

  24. Katznelson, Y., Tzafiri, L.: On power bounded operators. J. Func. Anal. 3, 313–328 (1986)

    Article  Google Scholar 

  25. Kraus, K.: States, effects and operations, fundamental notions of quantum theory. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  26. Meschede, D., Walther, H., Müller, G.: One-atom maser. Phys. Rev. Lett. 54(6), 551–554 (1985)

    Article  ADS  Google Scholar 

  27. Nachtergaele, B., Vershynina, A., Zagrebnov, V.: Non-equilibrium states of a photon cavity pumped by an atomic beam, to appear in Ann. H. Poincaré

  28. Raimond, J.-M., Brune, M., Haroche, S.: Colloquium: manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Raimond, J.-M., Haroche, S.: Monitoring the decoherence of mesoscopic quantum superpositions in a cavity. Sémin. Poincaré 2, 25 (2005)

    Google Scholar 

  30. Schrader, R.: Perron–Frobenius theory for positive maps on trace ideals. Fields Inst. Commun. 30, 361–378 (2001)

    MathSciNet  Google Scholar 

  31. Simon, B.: Convergence in trace ideals. Proc. Am. Math. Soc. 83(1), 39–43 (1981)

    Article  MATH  Google Scholar 

  32. Stinespring, W.F.: Positive functions on \(C\)-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)

    MATH  MathSciNet  Google Scholar 

  33. Vogel, K., Akulin, V.M., Schleich, W.P.: Quantum state engineering of the radiation field. Phys. Rev. Lett. 71(12), 1816–1819 (1993)

    Article  ADS  Google Scholar 

  34. Weidinger, M., Varcoe, B.T.H., Heerlein, R., Walther, H.: Trapping states in micromaser. Phys. Rev. Lett. 82(19), 3795–3798 (1999)

    Article  ADS  Google Scholar 

  35. Wellens, T., Buchleitner, A., Kümmerer, B., Maassen, H.: Quantum state preparation via asymptotic completeness. Phys. Rev. Lett. 85(16), 3361–3364 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is grateful to V. Georgescu for fruitful discussions and to C. Pellegrini for drawing his attention to reference [21]. This work was partially supported by the Agence Nationale de la Recherche, grant ANR-09-BLAN-0098-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bruneau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruneau, L. Mixing properties of the one-atom maser. J Stat Phys 155, 888–908 (2014). https://doi.org/10.1007/s10955-014-0982-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0982-2

Keywords

Navigation