Skip to main content
Log in

Numerical Study of Some Statistical Quantities for Quantum Systems Under Damping Effects

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We present a model of interaction between a four-level atom and the cavity field initially prepared in the coherent state in the presence of the phase damping effect. We discuss the atom–field entanglement and statistical properties under the damping effect in view of numerical calculations. We use the Mandel parameter as a quantifier of the statistical properties of the field; moreover, we study the different effects of the collective parameters in the master equation on the dynamical behavior of the field statistical properties and the entanglement measured by the negativity. Finally, we explore the link between the entanglement and statistical properties in view of the numerical results during the time evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).

  2. C. H. Bennett, G. Brassard, C. Crépeau, et al., Phys. Rev. Lett., 70, 1895 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Agrawal and A. Pati, Phys. Rev. A, 74, 062320 (2006).

    Article  ADS  Google Scholar 

  4. Z.-Q. Yin, H.-W. Li, W. Chen, et al., Phys. Rev. A, 82, 042335 (2010).

    Article  ADS  Google Scholar 

  5. T.-G. Noh, Phys. Rev. Lett., 103, 230501 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  6. K. Berrada, S. Abdel-Khalek, and C. H. R. Ooi, Phys. Rev. A, 86, 033823 (2012).

    Article  ADS  Google Scholar 

  7. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control, Cambridge University Press (2009).

  8. E. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” IEEE Proc., 51, 89 (1963).

    Article  Google Scholar 

  9. S. M. Barnett and P. L. Knight, Phys. Rev. A, 33, 2444 (1986).

    Article  ADS  Google Scholar 

  10. R. R. Puri and G. S. Agarwal, Phys. Rev. A, 35, 3433 (1987).

    Article  ADS  Google Scholar 

  11. T. Quang, P. L. Knight, and V. Buek, Phys. Rev. A, 44, 6092 (1991).

    Article  ADS  Google Scholar 

  12. J. Eiselt and H. Risken, Phys. Rev. A, 43, 346 (1991).

    Article  ADS  Google Scholar 

  13. B.-G. Englert, M. Naraschewski, and A. Schenzle, Phys. Rev. A, 50, 2667 (1994).

    Article  ADS  Google Scholar 

  14. C. W. Gardiner, Quantum Noise, Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  15. D. F. Walls and G. J. Milburn, Quantum Optics, Springer, Berlin (1994).

    Book  MATH  Google Scholar 

  16. H.-P.Breuer, U. Dorner, and F. Petruccione, Comput. Phys. Commun., 132, 30 (2000).

    Article  ADS  Google Scholar 

  17. I. L. Chuang and Y.Yamamoto, Phys. Rev. A, 55, 114 (1997).

    Article  ADS  Google Scholar 

  18. L. M. Kuang, X. Chen, G. H. Chen, and G. M. Lin, Phys. Rev. A, 56, 3139 (1997).

    Article  ADS  Google Scholar 

  19. A.-S. F. Obada, H. A. Hessian, and A.-B. A. Mohamed, J. Phys. B: At. Mol. Opt. Phys., 41, 135503 (2008).

    Article  ADS  Google Scholar 

  20. A.-S. F. Obada, H. A. Hessian, and A.-B. A. Mohamed, J. Phys. B: At. Mol. Opt. Phys., 40, 2241 (2007).

    Article  ADS  Google Scholar 

  21. S. Abdel-Khalek and N. H. Abdel-Wahab, Int. J. Theor. Phys., 50, 562 (2011).

    Article  Google Scholar 

  22. S. Abdel-Khalek, A. A. Mousa, and T. A. Nofal, J. Russ. Laser Res., 33, 547 (2012).

    Article  Google Scholar 

  23. K. Berrada, S. Abdel-Khalek, and A. Eid, J. Russ. Laser Res., 37, 45 (2015).

    Article  Google Scholar 

  24. D. F. Walls and G. J. Milburn, Quantum Optics, Springer-Verlag, Berlin Heidelberg (2008).

    Book  MATH  Google Scholar 

  25. S. Abdel-Khalek and A.-S. F. Obada, Ann. Phys., 325, 2542 (2010).

    Article  ADS  Google Scholar 

  26. X. Liu, Physica A, 286, 588 (2000).

    Article  ADS  Google Scholar 

  27. M. Abdel-Aty and A.-S. F. Obada, Eur. Phys. J. D, 23, 155 (2003).

    Article  ADS  Google Scholar 

  28. S. Abdel-Khalek, Y. S. El-Saman, and M. Abdel-Aty, Opt. Commun., 283, 1826 (2010).

    Article  ADS  Google Scholar 

  29. A.-S. F. Obada, H. A. Hessian, and A.-B. A. Mohamed, Laser Phys., 18, 1111 (2008).

    Article  ADS  Google Scholar 

  30. J. V. Neumann, Mathematical Foundations of Quantum Mechanics, Investigations in Physics, Princeton University Press (1955).

  31. S. J. D. Phoenix and P. L. Knight, Phys. Rev. A, 44, 6023 (1991).

    Article  ADS  Google Scholar 

  32. S. J. D. Phoenix and P. L. Knight, Phys. Rev. Lett., 66, 2833 (1991).

    Article  ADS  Google Scholar 

  33. G. Vidal and R. F. Werner, Phys. Rev. A, 65, 032314 (2002).

    Article  ADS  Google Scholar 

  34. K. Berrada, M. El-Baz, and Y. Hassouni, Rep. Math. Phys., 68, 23 (2011).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdel-Khalek.

Additional information

Manuscript submitted by the authors in English first on April 4, 2016 and in final form on May 4, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnaja, K.J.M.A., Waheed, S.E. & Abdel-Khalek, S. Numerical Study of Some Statistical Quantities for Quantum Systems Under Damping Effects. J Russ Laser Res 37, 219–226 (2016). https://doi.org/10.1007/s10946-016-9563-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9563-y

Keywords

Navigation