Skip to main content
Log in

On a model for quantum friction III. Ergodic properties of the spin-boson system

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamics of a 2-level atom (or spin 1/2) coupled to a mass-less bosonic field at positive temperature. We prove that, at small coupling, the combined quantum system approaches thermal equilibrium. Moreover we establish that this approach is exponentially fast in time. We first reduce the question to a spectral problem for the Liouvillean, a self-adjoint operator naturally associated with the system. To compute this operator, we invoke Tomita-Takesaki theory. Once this is done we use complex deformation techniques to study its spectrum. The corresponding zero temperature model is also reviewed and compared. From a more philosophical point of view our results show that, contrary to the conventional wisdom, quantum dynamics can be simpler at positive than at zero temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [A1] Arai, A.: On a model of a harmonic oscillator coupled to a quantized, mass-less, scalar field, I. J. Math. Phys.22, 2539 (1981)

    Article  Google Scholar 

  • [A2] Arai, A.: On a model of a harmonic oscillator coupled to a quantized, mass-less, scalar field, II. J. Math. Phys.22, 2549 (1981)

    Article  Google Scholar 

  • [AM] Amann, A.: Ground states of a spin-boson model. Ann. Phys.208, 414 (1991)

    Article  Google Scholar 

  • [AR1] Araki, H.: Positive cone, Radon-Nikodym theorems, relative Hamiltonian and the Gibbs condition in statistical mechanics. An application of the Tomita-Takesaki theory. In:C *-Algebras and their Applications to Statistical Mechanics and Quantum Field Theory. Kastler, D., (ed.) Amsterdam: North-Holland, 1976

    Google Scholar 

  • [AR2] Araki, H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. R.I.M.S.9, 165 (1973)

    Google Scholar 

  • [AW1] Araki, H., Woods, E.J.: Representation of the canonical commutation relations describing a non relativistic infinite free Bose gas. J. Math. Phys.4, 637 (1963)

    Article  Google Scholar 

  • [BR1] Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics I. Berlin, Heidelberg, New York: Springer, 1979

    Google Scholar 

  • [BR2] Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics II. Berlin, Heidelberg, New York: Springer, 1981

    Google Scholar 

  • [BFS] Bach, V., Fröhlich, J., Sigal, I.M.: Mathematical theory of non-relativistic matter and radiation. Preprint

  • [CA] Cannon, J.T.: Infinite volume limits of the cononical free Bose gas states on the Weyl algebra. Commun. Math. Phys.29, 89 (1973)

    Article  Google Scholar 

  • [CDG] Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photons and Atoms — Introduction to Quantum Electrodynamics. Berlin, Heidelberg, New York: Springer, 1991

    Google Scholar 

  • [CFKS] Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrödinger Operators. Berlin, Heidelberg, New York: Springer, 1987

    Google Scholar 

  • [CFS] Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory. Berlin, Heidelberg, New York: Springer, 1982

    Google Scholar 

  • [CH] Chaiken, J.M.: Number operators for representations of the canonical commutation relations. Commun. Math. Phys.8, 164 (1968)

    Article  Google Scholar 

  • [D1] Davies, E.B.: Markovian master equations. Commun. Math. Phys.39, 91 (1974)

    Article  Google Scholar 

  • [D2] Davies, E.B.: Markovian master equations II. Math. Ann.219, 147 (1976)

    Article  Google Scholar 

  • [D3] Davies, E.B.: Quantum Theory of Open Systems. New York: Academic Press, 1976

    Google Scholar 

  • [DI] Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. Royal Soc. London, Series A114, 243 (1927)

    Google Scholar 

  • [E] Einstein, A.: Zur Quantentheorie der Strahlung. Physik. Zeitschr.18, 121 (1917)

    Google Scholar 

  • [FNV1] Fannes, M., Nachtergaele, B., Verbeure, A.: The equilibrium states of the spin-boson model. Commun. Math. Phys.114, 537 (1988)

    Article  Google Scholar 

  • [FNV2] Fannes, M., Nachtergaele, B., Verbeure, A.: Quantum tunneling in the spin-boson model. Europhysics Lett.4, 963 (1987)

    Google Scholar 

  • [FNV3] Fannes, M., Nachtergaele, B., Verbeure, A.: Tunneling in the equilibrium state of a spin-boson model. J. Phys. A21, 1759 (1988)

    Article  Google Scholar 

  • [GJ] Glimm, J., Jaffe, A.: Quantum field theory models. In: Statistical Mechanics and Quantum Field Theory. DeWitt, C., Stora, R., (eds.) New York, London, Paris: Gordon and Breach, 1970

    Google Scholar 

  • [HA] Haag, R.: Local Quantum Physics. Berlin, Heidelberg, New York: Springer, 1993

    Google Scholar 

  • [HE] Heitler, W.: The Quantum Theory of Radiation. Oxford: Oxford University Press, 1954

    Google Scholar 

  • [HHW] Haag, R., Hugenholtz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys.5, 215 (1967)

    Article  Google Scholar 

  • [HS1] Hübner, M., Spohn, H.: Radiative decay: Non perturbative approaches. Preprint

  • [HS2] Hübner, M., Spohn, H.: Spectral properties of the spin-boson Hamiltonian. Preprint

  • [JP1] Jakšić, V., Pillet, C.-A.: On a model for quantum friction II. Fermi's golden rule and dynamics at positive temperature. Commun. Math. Phys.

  • [JP2] Jakšić, V., Pillet, C.-A.: On a model for quantum friction IV. Return to equilibrium, (in preparation)

  • [LCD] Legget, A.J. et al.: Dynamics of the dissipative two-state system. Rev. Mod. Phys.59, 1 (1987)

    Article  Google Scholar 

  • [LP] Lewis, J.T., Pulè, J.V.: The equilibrium states of the free boson gas. Commun. Math. Phys.36, 1 (1974)

    Article  Google Scholar 

  • [MA] Maassen, H.: Return to thermal equilibrium by the solution of a quantum Langevin equation. J. Stat. Phys.34, 239 (1984)

    Article  Google Scholar 

  • [M] Martin, Ph.A.: Modèles en Mécanique Statistique des Processus Irréversibles (Lectures Notes in Physics, 103). Berlin, Heidelberg, New York: Springer, 1979

    Google Scholar 

  • [P] Pauli, W.: Pauli Lectures on Physics: Volume 4. Statistical Mechanics. Edited by C.P. Enz. Cambridge, MA: The MIT Press, 1973

    Google Scholar 

  • [PA] Pais, A.: “Subtle is the Lord...”, The Science and the Life of Albert Einstein. Oxford, New York: Oxford University Press, 1982

    Google Scholar 

  • [PU] Pulè, J.V.: The Bloch equations. Commun. Math. Phys.38, 241 (1974)

    Article  Google Scholar 

  • [RO1] Robinson, D.W.: C*-algebras and quantum statistical mechanics. In: C*-Algebras and their Applications to Statistical Mechanics and Quantum Field Theory. Kastler, D., (ed.) Amsterdam: North-Holland, 1976

    Google Scholar 

  • [RO2] Robinson, D.W.: Return to equilibrium. Commun. Math. Phys.31, 171 (1973)

    Article  Google Scholar 

  • [RS] Reed, M., Simon, B.: Methods of Modern Mathematical Physics III. Scattering Theory. London: Academic Press, 1978

    Google Scholar 

  • [SA] Sakai, S.:C *-Algebras andW *-Algebras. Berlin, Heidelberg, New York: Springer, 1971

    Google Scholar 

  • [SD] Spohn, H., Dümcke, R.: Quantum tunneling with dissipation and the Ising model overR. J. Stat. Phys.41, 381 (1985)

    Google Scholar 

  • [SDLL] Smedt, P., Dürr, D., Lebowitz, J.L., Liverani, C.: Quantum system in contact with a thermal environment: Rigorous treatment of a simple model. Commun. Math. Phys.120, 120 (1988)

    Article  Google Scholar 

  • [SI] Simon, B.: TheP(ϕ)2 Euclidean (Quantum) Field Theory. Princeton NJ: Princeton University Press, 1974

    Google Scholar 

  • [SC] Schwinger, J.: Selected Papers on Quantum Electrodynamics. New York: Dover, 1958

    Google Scholar 

  • [SP] Spohn, H.: Ground state(s) of the spin-boson Hamiltonian. Commun. Math. Phys.123, 277 (1989)

    Article  Google Scholar 

  • [WW] Weisskopf, V., Wigner, E.P.: Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichtheorie. Z. Phys.63, 54 (1930)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakšić, V., Pillet, CA. On a model for quantum friction III. Ergodic properties of the spin-boson system. Commun.Math. Phys. 178, 627–651 (1996). https://doi.org/10.1007/BF02108818

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02108818

Keywords

Navigation