Skip to main content
Log in

Temporal behavior of an atom-cavity system in two distinct regimes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The time-dependent treatment of a three-level atom in the V configuration confined in an optical cavity as well as the dynamics of the cavity field in two different regimes, in the presence and absence of the nonlinear mirror, has been discussed. The time-dependent infinite coupled differential equations of motion are solved by the matrix continued fraction method. In deriving the numerical inverse Laplace transform, the quotient difference algorithm and the fast Fourier transform have been applied. The nonlinear effects of the system over the time evolution of the population inversion, the mean photon number and the second-order correlation function for some dimensionless parameters are delineated. Ultimately the reduction of the three-level atom to an effective two-level one under specific conditions and in a weak-driving limit has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-D. Du, C.-D. Gong, Phys. Rev. A 50, 779 (1994)

    Article  ADS  Google Scholar 

  2. A. Joshi, S.V. Lawande, Phys. Rev. A 46, 5906 (1992)

    Article  ADS  Google Scholar 

  3. A. Joshi, R.R. Puri, Phys. Rev. A 45, 5056 (1992)

    Article  ADS  Google Scholar 

  4. M. Abdel-Aty, J. Phys. B: At. Mol. Opt. Phys. 33, 2665 (2000)

    Article  ADS  Google Scholar 

  5. S.Y. Kilin, Quanta and information, in Progress in Optics, edited by E. Wolf, Vol. 42 (Elsevier, North Holland, 2001) p. 37

  6. B. Jones, S. Ghose, J.P. Clemens, P.R. Rice, L.M. Pedrotti, Phys. Rev. A 60, 3267 (1999)

    Article  ADS  Google Scholar 

  7. A.D. Boozer, Phys. Rev. A 78, 053814 (2008)

    Article  ADS  Google Scholar 

  8. B. Parvin, R. Malekfar, Eur. Phys. J. D 66, 1 (2012)

    Article  Google Scholar 

  9. B. Parvin, R. Malekfar, J. Mod. Opt. 59, 848 (2012)

    Article  ADS  Google Scholar 

  10. B. Parvin, R. Malekfar, J. Mod. Opt. 59, 1841 (2012)

    Article  ADS  Google Scholar 

  11. H.-I. Yoo, J.H. Eberly, Phys. Rep. 118, 239 (1985)

    Article  ADS  Google Scholar 

  12. M.S.K. Razmi, J.H. Eberly, Opt. Commun. 76, 265 (1990)

    Article  ADS  Google Scholar 

  13. A. Rahman, J.H. Eberly, Opt. Express 4, 133 (1999)

    Article  ADS  Google Scholar 

  14. B. Sobolewska, B.J. Herman, P.D. Drummond, J.H. Eberly, Opt. Lett. 6, 408 (1981)

    Article  ADS  Google Scholar 

  15. I.C. Khoo, J.H. Eberly, Phys. Rev. A 14, 2174 (1976)

    Article  ADS  Google Scholar 

  16. F.T. Hioe, J.H. Eberly, Phys. Rev. A 25, 2168 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Oreg, F.T. Hioe, J.H. Eberly, Phys. Rev. A 29, 690 (1984)

    Article  ADS  Google Scholar 

  18. B.J. Herman, P.D. Drummond, J.H. Eberly, B. Sobolewska, Phys. Rev. A 30, 1910 (1984)

    Article  ADS  Google Scholar 

  19. J. Oreg, G. Hazak, J.H. Eberly, Phys. Rev. A 32, 2776 (1985)

    Article  ADS  Google Scholar 

  20. B.J. Herman, J.H. Eberly, M.G. Raymer, Phys. Rev. A 39, 3447 (1989)

    Article  ADS  Google Scholar 

  21. B.W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg, J.H. Eberly, Phys. Rev. A 45, 5297 (1992)

    Article  ADS  Google Scholar 

  22. A. Rahman, J.H. Eberly, Phys. Rev. A 58, R805 (1998)

    Article  ADS  Google Scholar 

  23. G.S. Agarwal, J.H. Eberly, Phys. Rev. A 61, 013404 (1999)

    Article  ADS  Google Scholar 

  24. F.T. Hioe, J.H. Eberly, Phys. Rev. A 29, 1164 (1984)

    Article  ADS  Google Scholar 

  25. Z. Bialynicka-Birula, I. Bialynicki-Birula, J.H. Eberly, B.W. Shore, Phys. Rev. A 16, 2048 (1977)

    Article  ADS  Google Scholar 

  26. J.H. Eberly, B.W. Shore, Z. Bialynicka-Birula, I. Bialynicki-Birula, Phys. Rev. A 16, 2038 (1977)

    Article  ADS  Google Scholar 

  27. J.H. Eberly, Quantum Semiclass. Opt. 7, 373 (1995)

    Article  ADS  Google Scholar 

  28. D.A. Cardimona, Phys. Rev. A 41, 5016 (1990)

    Article  ADS  Google Scholar 

  29. H.R. Baghshahi, M.K. Tavassoly, A. Behjat, Commun. Theor. Phys. 62, 430 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. H.R. Baghshahi, M.K. Tavassoly, Eur. Phys. J. Plus 130, 37 (2015)

    Article  Google Scholar 

  31. M.J. Faghihi, M.K. Tavassoly, M.B. Harouni, Laser Phys. 24, 045202 (2014)

    Article  ADS  Google Scholar 

  32. L. Brancik, Matlab oriented matrix Laplace transforms inversion for distributed systems simulation, in Proceedings of 12th Radioelektronika 2002 (Slovakia, 2002) pp. 114--117

  33. P. Henrici, Quotient-difference algorithms, in Mathematical Methods for Digital Computers, edited by A. Ralston, H.S. Wilf, Vol. 2 (Wiley, New York, 1967) pp. 37--62

  34. P. Henrici, Applied and Computational Complex Analysis, Vol. 1 (Wiley, New York, 1974)

  35. P. Henrici, Applied and Computational Complex Analysis, Vol. 2 (Wiley, New York, 1977)

  36. F.R. De Hoogs, J.H. Knight, A.N. Stokes, Siam J. Sci. Stat. Comput. 3, 357 (1982)

    Article  Google Scholar 

  37. G.M. Meyer, H.-J. Briegel, Phys. Rev. A 58, 3210 (1998)

    Article  ADS  Google Scholar 

  38. J. Perina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (Kluwer, London, 1991)

  39. G.S. Agarwal, R.R. Puri, Phys. Rev. A 39, 2969 (1989)

    Article  ADS  Google Scholar 

  40. H.J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Springer-Verlag, Berlin, 1999)

  41. V. Bernat, I. Jex, Quantum Opt. 4, 9 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  42. N. Nayak, R.K. Bullough, B.V. Thompson, G.S. Agarwal, IEEE J. Quantum Electron. 24, 1331 (1988)

    Article  ADS  Google Scholar 

  43. G.E. Forsythe, M.A. Malcolm, C.B. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, Englewood Cliffs, 1977)

  44. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer-Verlag, Berlin, 1989)

  45. A.-S.F. Obada, M.M.A. Ahmeh, F.K. Faramawy, E.M. Khalil, Chaos, Solitons and Fractals 28, 983 (2006)

    Article  MATH  ADS  Google Scholar 

  46. Q.-C. Zhou, Opt. Commun. 266, 218 (2006)

    Article  ADS  Google Scholar 

  47. Y.Z. Lai, W.D. Li, J.Q. Liang, Opt. Commun. 160, 240 (1999)

    Article  ADS  Google Scholar 

  48. A.-S.F. Obada, M. Abdel-Aty, Physica A 329, 53 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. M. Orszag, Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories and Decoherence (Springer-Verlag, Berlin, 2008)

  50. C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, New York, 2005)

  51. T.S. Dlodlo, Phys. Rev. A 27, 1435 (1983)

    Article  ADS  Google Scholar 

  52. F.A.A. El-Orany, M.S. Abdalla, J. Peřina, Eur. Phys. J. D 33, 453 (2005)

    Article  ADS  Google Scholar 

  53. C.C. Gerry, J.H. Eberly, Phys. Rev. A 42, 6805 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Parvin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvin, B. Temporal behavior of an atom-cavity system in two distinct regimes. Eur. Phys. J. Plus 131, 1 (2016). https://doi.org/10.1140/epjp/i2016-16001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16001-3

Keywords

Navigation