Skip to main content
Log in

Interaction of Cu2+, Pb2+, Zn2+ with Trypsin: What is the Key Factor of their Toxicity?

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Heavy metals possess great endangerment to environment even human health because of their indissolubility and bioaccumulation. The toxicity of heavy metal ions (Cu2+, Pb2+, Zn2+) to trypsin was investigated by fluorescence, synchronous fluorescence, UV–vis absorption, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), and enzyme activity assay. The experimental results showed that toxic effect of heavy metal ions was due to their own characteristic, rather than the electric charges of the ion. Zn2+ could not show the obvious toxicity to trypsin, while the structure and function of trypsin was damaged when the enzyme explored to Cu2+ and Pb2+. From the spectra results, we found that Cu2+ would bind with trypsin, which lead to the fluorescence quenched and hydrophobicity increased. Pb2+ could also change the structure and reduce the activity of trypsin in high concentration. In vitro measurement, the toxicity order of heavy metal ions to trypsin is: Cu2+ > Pb2+ > Zn2+. In addition, isothermal titration calorimetry analysis proved that the interactions between Cu2+, Pb2+, Zn2+ and trypsin were all spontaneous and exothermic, which indicated the adverse effect of these heavy metal ions to trypsin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Badugu R (2005) Fluorescence sensor design for transition metal ions: the role of the PIET interaction efficiency. J Fluoresc 15(1):71–83

    Article  CAS  PubMed  Google Scholar 

  2. Tlili A et al (2011) Use of the MicroResp™ method to assess pollution-induced community tolerance to metals for lotic biofilms. Environ Pollut 159(1):18–24

    Article  CAS  PubMed  Google Scholar 

  3. Berlizov AN et al (2007) Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Sci Total Environ 372(2–3):693–706

    Article  CAS  PubMed  Google Scholar 

  4. Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  PubMed  Google Scholar 

  5. Chen TB (2005) Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 60(4):542–551

    Article  CAS  PubMed  Google Scholar 

  6. Agarwal SK (2009) Heavy metal pollution. APH Publ Vol 4

  7. Wang Y et al (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67(1):75–81

    Article  CAS  PubMed  Google Scholar 

  8. Muchuweti M et al (2006) Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: implications for human health. Agric Ecosyst Environ 112(1):41–48

    Article  CAS  Google Scholar 

  9. Leung AO et al (2008) Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ Sci Technol 42(7):2674–2680

    Article  CAS  PubMed  Google Scholar 

  10. Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159(10):2575–2585

    Article  CAS  PubMed  Google Scholar 

  11. Meng, Z (2000) Environmental toxicology. China Environmental Science Press Vol. 8

  12. Ghosh S (2008) Interaction of trypsin with sodium dodecyl sulfate in aqueous medium: a conformational view. Colloids Surf B: Biointerfaces 66(2):178–86

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Wang X (1995) Zinc, copper, copper, cadmium metal ions acute toxicity tests on the bayscallop spat. Aquat Sci 14:1–10

    CAS  Google Scholar 

  14. Fargasova A (2001) Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots. Biol Plant 44(3):471–473

    Article  CAS  Google Scholar 

  15. Zhang H et al (2011) Toxic effects of different charged metal ions on the target—Bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 78(1):523–527

    Article  PubMed  Google Scholar 

  16. Hu X, Yu Z, Liu R (2013) Spectroscopic investigations on the interactions between isopropanol and trypsin at molecular level. Spectrochim Acta A Mol Biomol Spectrosc 108:50–54

    Article  CAS  PubMed  Google Scholar 

  17. Bosch Cabral C, Imasato H, Rosa JC (2002) Fluorescence properties of tryptophan residues in the monomeric d-chain of Glossoscolex paulistus hemoglobin: an interpretation based on a comparative molecular model. Biophys Chem 97(2):139–157

    Article  CAS  PubMed  Google Scholar 

  18. Van De Weert M (2010) Fluorescence quenching to study protein-ligand binding: common errors. J Fluoresc 20(2):625–629

    Article  PubMed  Google Scholar 

  19. Hemmila I, Laitala V (2005) Progress in lanthanides as luminescent probes. J Fluoresc 15(4):529–542

    Article  CAS  PubMed  Google Scholar 

  20. F. Deng, Y. Wang, and J. Liu (2012) Fluorescence Spectroscopy interaction of copper ions with trypsin. 17th National Academic Conference on Molecular Spectroscopy.

  21. Hong F et al (2003) Activity of the role of lead ions mechanism of trypsin. J Inorg Chem 19(2):129

    CAS  Google Scholar 

  22. Zhang H, Hao F, Liu R (2013) Interactions of lead (II) acetate with the enzyme lysozyme: a spectroscopic investigation. J Lumin 142:144–149

    Article  CAS  Google Scholar 

  23. Wang Y et al (2007) Experimental research on quantitative inversion models of suspended sediment concentration using remote sensing technology. Chin Geogr Sci 17(3):243–249

    Article  Google Scholar 

  24. HE JS et al (2011) Thermdynamics kinetics and structure chemistry. Acta Phys -Chim Sin 27(11):2499–2504

    CAS  Google Scholar 

  25. Geddes CD, Lakowicz JR (2002) Editorial: metal-enhanced fluorescence. J Fluoresc 12(2):121–129

    Article  Google Scholar 

  26. Ascenzi P et al (2003) The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. Curr Protein Pept Sci 4(3):231–251

    Article  CAS  PubMed  Google Scholar 

  27. Prasher DC et al (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233

    Article  CAS  PubMed  Google Scholar 

  28. Amorín M, Castedo L, Granja JR (2003) New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes. J Am Chem Soc 125(10):2844–2845

    Article  PubMed  Google Scholar 

  29. Wang YQ, Chen TT, Zhang HM (2010) Investigation of the interactions of lysozyme and trypsin with biphenol a using spectroscopic methods. Spectrochim Acta A Mol Biomol Spectrosc 75(3):1130–1137

    Article  PubMed  Google Scholar 

  30. Tsao MS et al (2005) Erlotinib in lung cancer—molecular and clinical predictors of outcome. N Engl J Med 353(2):133–144

    Article  CAS  PubMed  Google Scholar 

  31. Sui Y et al (2007) Catalytic and asymmetric Friedel–crafts alkylation of indoles with nitroacrylates. Appl Synth Tryptophan Analogues Tetrahedron 63(24):5173–5183

    CAS  Google Scholar 

  32. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta (BBA)-Proteins Proteomics 1751(2):119–139

    Article  CAS  Google Scholar 

  33. Chai J et al (2013) Investigation on potential enzyme toxicity of clenbuterol to trypsin. Spectrochim Acta A Mol Biomol Spectrosc 105:200–206

    Article  CAS  PubMed  Google Scholar 

  34. Dullweber F et al (2001) Factorising ligand affinity: a combined thermodynamic and crystallographic study of trypsin and thrombin inhibition. J Mol Biol 313(3):593–614

    Article  CAS  PubMed  Google Scholar 

  35. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125(48):14859–14866

    Article  CAS  PubMed  Google Scholar 

  36. Vermeirssen V, Van Camp J, Verstraete W (2002) Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides. J Biochem Biophys Methods 51(1):75–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (20875055, 21277081, 201477067), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Research Fund for the Doctoral Program of Higher Education, Ministry of Education of China (708058, 20130131110016) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Canzhu Gao or Rutao Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, H., Liu, G. et al. Interaction of Cu2+, Pb2+, Zn2+ with Trypsin: What is the Key Factor of their Toxicity?. J Fluoresc 24, 1803–1810 (2014). https://doi.org/10.1007/s10895-014-1469-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1469-x

Keyword

Navigation