Skip to main content
Log in

Progress in Lanthanides as Luminescent Probes

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Lanthanides have recently found applications in different fields of biomolecular and medical research. Luminescent lanthanide chelates have created interest mainly due to their unique luminescent properties, such as their long Stokes’ shift and exceptional decay times allowing efficient temporal discrimination of background interferences in the assays, such as immunoassays. Recently, new organometallic complexes have been developed giving opportunities to novel applications, in heterogeneous and homogeneous immunoassays, DNA hybridization assays, high-throughput screening as well as in imaging. In addition, encapsulating the chelates into suitable matrix in beads enables the use of new members of lanthanides extending the emission wavelength to micrometer range and decays from a few microseconds to milliseconds. As the luminescence is derived from complicated intrachelate energy transfer, it also gives novel opportunities to exploit these levels in different types of energy transfer based applications. This review gives a short overview of recent development of lanthanide chelate-labels and discusses in more details of energy levels and their exploitation in new assay formats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Hemmilä (1990). Applications of Fluorescence in Immunoassays, Wiley Interscience, New York.

    Google Scholar 

  2. I. Hemmilä and V.-M. Mukkala (2001). Time-resolution in fluorometry technologies, labels and applications in bioanalytical assays. Crit. Rev. Clin. Lab. Sci. 38, 441–519.

    Article  Google Scholar 

  3. W. T. Carnall, P. R. Fields, and K. Rajnak (1968). Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49, 4424–4442.

    Article  Google Scholar 

  4. W. T. Carnall, P. R. Fields, and K. Rajnak (1968). Electronic energy levels in the trivalent lanthanide aquo ions II. Gd3+. J. Chem. Phys. 49, 4443–4446.

    Article  Google Scholar 

  5. W. T. Carnall, P. R. Fields, and K. Rajnak (1968). Electronic energy levels in the trivalent lanthanide aquo ions. III. Tb3+. J. Chem. Phys. 49, 4447–4449.

    Article  Google Scholar 

  6. W. T. Carnall, P. R. Fields, and K. Rajnak (1968). Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+. J. Chem. Phys. 49, 4450–4455.

    Article  Google Scholar 

  7. S. I. Weissman (1942). Intramolecular energy transfer, the fluorescence of complexes of europium, J. Chem. Phys. 10, 214–217.

    Article  Google Scholar 

  8. H. Lemmetyinen, E. Vuorimaa, A. Jutila, V. M. Mukkala, H. Takalo, and J. Kankare (2000). A time-resolved study of the mechanism of the energy transfer from a ligand to the lanthanide(III) ion in solution and solid films. Luminescence 15, 341–350.

    Article  PubMed  Google Scholar 

  9. M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J. C. Rodrígues-Ubis, and J. Kankare (1997). Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J. Luminesc. 75, 149–169.

    Article  Google Scholar 

  10. I. Hemmilä, V.-M. Mukkala, and H. Takalo (2005). Development of luminescent lanthanide chelate labels for diagnostic assays. J. Alloys Compounds 249, 158–162.

    Article  Google Scholar 

  11. F. Gutierrez, C. Tedeschi, L. Maron, J. P. Daudey, R. Poteau, J. Azema, P. Tisnes, and C. Picard (2004). Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties. Dalton Trans. 1334–1347.

  12. A. Dadabhoy, S. Faulkner, and P. G. Sammes (2005). Small singlet–triplet energy gap of acridone enables longer wavelength sensitization of europium(III) luminescence. J. Chem. Soc. Perkin Trans. 2, 2359–2360.

    Google Scholar 

  13. F. R. G. Silva and O. L. Malta (1997). Calculation of the ligand-lanthanide ion energy transfer rate in coordination compounds: Contributions of exchange interactions. J. Alloys Compounds 250, 427–430.

    Article  Google Scholar 

  14. J.-C. Bünzli and G. R. Chopin (1989). Lanthanide Probes in Life, Chemical and Earth Sciences. Theory and Practice, Elsevier, Amsterdam, New York.

    Google Scholar 

  15. M. H. Werts, R. H. Woudenberg, P. G. Emmerink, R. van Gassel, J. W. Hofstraat, and J. W. Verhoeven (2000). A near-infrared luminescent label based on Yb(III) ions and its application in a fluoroimmunoassay. Angew. Chem. Int. Ed. Engl. 39, 4542–4544.

    Article  PubMed  Google Scholar 

  16. M. H. Werts, J. W. Hofstraat, F. A. J. Geurts, and J. W. Verhoeven (1997). Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodynium(III) and erbium(III) chelates. Chem. Phys. Lett. 276, 196–201.

    Article  Google Scholar 

  17. S. Faulkner, A. Beeby, R. S. Dickins, D. Parker, and J. A. G. Williams (1999). Generating a warm glow: Lanthanide complexes which luminescence in the near-IR. J. Fluorescence 9, 45–49.

    Article  Google Scholar 

  18. F. C. van Veggel, J. W. Stouwdam, G. A. Hebbink, and J. Huskens (2003). Lanthanide(III)-dobed nanoparticles that emit in the near infrared. Proc. SPIE 5224, 164–175.

    Article  Google Scholar 

  19. N. Sabbatini and M. Guardigli (1993). Luminescent lanthanide complexes as photochemical supramolecular devices. Coord. Chem. Rev. 123, 201–228.

    Article  Google Scholar 

  20. I. Hemmilä (1985). Time-resolved fluorometric determination of terbium in aqueous solution. Anal. Chem. 57, 1676–1681.

    Article  Google Scholar 

  21. J. R. Lakowicz, B. P. Maliwal, J. Malicka, Z. Gryczynski, and I. Gryczynski (2002). Effects of silver island films on the luminescent intensity and decay times of lanthanide chelates. J. Fluorescence 12, 431–437.

    Article  Google Scholar 

  22. A. Beeby, S. Faulkner, D. Parker, and J. A. G. Williams (2001). Sensitized luminescence from phenanthridine appended lanthanide complexes: Analysis of triplet mediated energy transfer processes in terbium, europium and neodynium complexes. J. Chem. Soc. Perkin Trans. 2, 1268–1273.

    Google Scholar 

  23. S. Faulkner, M. C. Carrie, S. J. A. Pope, J. Squire, A. Beeby, and P. G. Sammes (2004). Pyrene-sensitised near-IR luminescence from ytterbium and neodymium complexes. Dalton Trans. 1405–1409.

  24. W. De. W. Horrocks Jr. and D. R. Sudnick (1979). Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101, 334–340.

    Article  Google Scholar 

  25. S. Lis (2002). Luminescence spectroscopy of lanthanide(III) ions in solution. J. Alloys Compounds 341, 45–50.

    Article  Google Scholar 

  26. G. E. Buono-Cuore, H. Li, and B. Arciniac (2005). Quenching of excited states by lanthanide ions and chelates in solution. Coord. Chem. Rev. 99, 55–87.

    Article  Google Scholar 

  27. A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. G. Williams, and M. Woods (1999). Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: An improved luminescence method for establishing solution hydration states. J. Chem. Soc. Perkin Trans. 2, 493–504.

    Google Scholar 

  28. R. M. Supkowski and W. D. Horrocks Jr. (2002). On the number of water molecules, q, coordinated to europium(III) ions in solution from luminescence decay lifetimes. Inorg. Chim. Acta 340, 44–48.

    Article  Google Scholar 

  29. I. Hemmilä, V.-M. Mukkala, and H. Takalo (1997). Development of luminescent lanthanide chelate labels for diagnostic assays. J. Alloys Compounds 249, 158–162.

    Article  Google Scholar 

  30. N. Sabbatini (1987). Radiative and nonradiative transitions in the Eu(III) hexaaza macrocyclic complex [Eu(C22H26N6) (CH3COO)](CH3COO) Cl⋅2H2O. J. Chem. Phys. 91, 4681–4685.

    Article  Google Scholar 

  31. S. Petoud, J.-C. Bünzli, T. Glanzman, C. Piguet, Q. Xiang, and R. P. Thummel (1999). Influence of charge-transfer states on the Eu(III) luminescence in mononuclear triple helical complexes with tridentate aromatic ligands. J. Luminescence 82, 69–79.

    Article  Google Scholar 

  32. I. Hemmilä (1999). LANCETM: Homogeneous assay platform for HTS. J. Biomol. Screen. 4, 303–308.

    Article  PubMed  Google Scholar 

  33. D. L. Dexter (1953). A theory of senritized luminescence in solids. J. Chem. Phys. 21, 836–850.

    Article  Google Scholar 

  34. G. Mathis (1993). Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin. Chem. 39, 1953–1959.

    PubMed  Google Scholar 

  35. N. Sabbatini, S. Perathoner, G. Lattanzi, S. Dellonte, and V. Balzani (1988). Electron- and energy-transfer processes involving excited states of lanthanide complexes: Evidence for inner-sphere and outer-sphere mechanism. Inorg. Chem. 27, 1628–1633.

    Article  Google Scholar 

  36. J. Matko, A. Jenei, T. Wei, and M. Edidin (1995). Luminescence quenching by long range electron transfer: A probe of protein clustering and conformation at the cell surface. Cytometry 19, 191–200.

    Article  PubMed  Google Scholar 

  37. V. H. P{e}rez-Luna, S. Yang, E. M. Rabinovich, T. Buranda, L. A. Sklar, P. D. Hampton, and G. P. Lopez (2002). Fluorescence biosensing strategy based on energy transfer between fluorescently labeled receptors and a metallic surface. Biosens. Bioelectron. 17, 71–78.

    Article  PubMed  Google Scholar 

  38. L. Stryer, D. D. Thomas, and C. F. Meares (1982). Diffusion-enhanced fluorescence energy transfer. Annu. Rev. Biophys. Bioeng. 11, 203–222.

    Article  PubMed  Google Scholar 

  39. I. Hemmilä, S. Dakubu, V. M. Mukkala, H. Siitari, and T. Lovgren (1984). Europium as a label in time-resolved immunofluorometric assays. Anal. Biochem. 137, 335–343.

    Article  PubMed  Google Scholar 

  40. J. Kropf, E. Quitte, and A. M. Gressner (1991). Time-resolved immunofluorometric assays with measurement of a europium chelate in solution: Application for sensitive determination of fibronectin. Anal. Biochem. 197, 258–265.

    Article  PubMed  Google Scholar 

  41. J. Yuan and K. Matsumoto (1997). Synthesis of a new tetradentate β-diketonate-europium chelate and its application for time-resolved fluorometry of albumin. J. Pharm. Biomed. Anal. 15, 1397–1403.

    Article  PubMed  Google Scholar 

  42. K. Mitrunen, K. Pettersson, T. Piironen, T. Björk, H. Lilja, and T. Lövgren (1997). Dual-label one-step immunoassay simultaneous measurement of free and total prostate-specific antigen concentrations and ratios in serum. Clin. Chem. 41, 115–120.

    Google Scholar 

  43. I. Hemmilä and A. Båtsman (1988). Time-resolved immunofluorometry of hCG. Clin. Chem. 34, 1163.

    Google Scholar 

  44. P. von Lode, J. Rosenberg, K. Pettersson, and H. Takalo (2003). A europium chelate for quantitative point-of-care immunoassays using direct surface measurement. Anal. Chem. 75, 3193–3201.

    Article  PubMed  Google Scholar 

  45. C. S. Lim, J. N. Miller, and J. W. Bridges (1980). Energy-transfer immunoassay: A study of the experimental parameters in an assay for human serum albumin. Anal. Biochem. 108, 176–184.

    Article  PubMed  Google Scholar 

  46. L. E. Morrison (1988). Time resolved detection of energy transfer: Theory and application to immunoassays. Anal. Biochem. 174, 101–120.

    Article  PubMed  Google Scholar 

  47. L. Kokko, K. Sandberg, T. Lovgren, and T. Soukka (2004). Europium(III) chelate-dyed nanoparticles as donors in a homogeneous proximity-based immunoassay for estradiol. Anal. Chim. Acta 503, 155–162.

    Article  Google Scholar 

  48. T. Heyduk and E. Heyduk (2001). Luminescence energy transfer with lanthanide chelates: Interpretation of sensitized acceptor decay amplitudes. Anal. Biochem. 289, 60–67.

    Article  PubMed  Google Scholar 

  49. S. G. Jones, D. Y. Lee, J. F. Wright, J. N. Jones, M. L. Teear, S. J. Gregory, and D. D. Burns (2001). Improvements in the sensitivity of time resolved fluorescence energy transfer assays. J. Fluorescence 11, 13–21.

    Article  Google Scholar 

  50. D. Maurel, J. Kniazeff, G. Mathis, E. Trinquet, J. P. Pin, and H. Ansanay (2004). Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal. Biochem. 329, 253–262.

    Article  PubMed  Google Scholar 

  51. M. Li and P. R. Selvin (1997). Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: Attachment to DNA and energy transfer measurements. Bioconjugate Chem. 8, 127–132.

    Article  Google Scholar 

  52. P. R. Selvin, T. M. Rana, and J. E. Hearst (1994). Luminescence resonance energy transfer. J. Am. Chem. Soc. 116, 6029–6030.

    Article  Google Scholar 

  53. K. Blomberg, P. Hurskainen, and I. Hemmilä (1999). Terbium and rhodamine as labels in a homogeneous time-resolved fluorometric energy transfer assay of the β subunit of human chorionic gonadotropin in serum. Clin. Chem. 45, 855–861.

    PubMed  Google Scholar 

  54. J. Karvinen, P. Hurskainen, S. Gopalakrishnan, D. Burns, U. Warrior, and I. Hemmila (2002). Homogeneous time-resolved fluorescence quenching assay (Lance) for caspase-3. J. Biomol. Screen 7, 223–231.

    Article  PubMed  Google Scholar 

  55. J. Karvinen, V. Laitala, M. L. Makinen, O. Mulari, J. Tamminen, J. Hermonen, P. Hurskainen, and I. Hemmila (2004). Fluorescence quenching-based assays for hydrolyzing enzymes. Application of time-resolved fluorometry in assays for caspase, helicase, and phosphatase. Anal. Chem. 76, 1429–1436.

    Article  PubMed  Google Scholar 

  56. D. L. Earnshaw and K. J. Moore (2004). Time-resolved fluorescence energy transfer DNA helicase assays for high throughput screening. J. Biomol. Screen. 4, 239–248.

    Article  Google Scholar 

  57. J. Karvinen, A. Elomaa, M. L. Makinen, H. Hakala, V. M. Mukkala, J. Peuralahti, P. Hurskainen, J. Hovinen, and I. Hemmila (2004). Caspase multiplexing: Simultaneous homogeneous time-resolved quenching assay (TruPoint) for caspases 1, 3, and 6. Anal. Biochem. 325, 317–325.

    Article  PubMed  Google Scholar 

  58. A. Ylikoski, A. Elomaa, P. Ollikka, H. Hakala, V. M. Mukkala, J. Hovinen, and I. Hemmila (2004). Homogeneous time-resolved fluorescence quenching assay (TruPoint) for nucleic acid detection. Clin. Chem. 50, 1943–1947.

    Article  PubMed  Google Scholar 

  59. V. Laitala and I. Hemmilä (2005). Homogeneous assay based on anti-stokes’ shift time-resolved fluorescence resonance energy-transfer measurement. Anal. Chem. 77, 1483–1487.

    Article  PubMed  Google Scholar 

  60. J. Chen and P. R. Selvin (2000). Lifetime- and color-tailored fluorophores in the micro- to millisecond time regime, J. Am. Chem. Soc. 122, 657–660.

    Article  Google Scholar 

  61. Y.-Y. Xu, I. Hemmilä, and T. Lövgren (1992). Co-fluorescence effect in time-resolved fluoroimmunoassays. A review. Analyst 117, 1061–1069.

    Article  PubMed  Google Scholar 

  62. Y.-Y. Xu and I. Hemmilä (1992). Co-fluorescence enhancement system based on pivaloyltrifluoroacetone and yttrium for the simultaneous detection of europium, terbium, samarium, and dysprosium. Anal. Chim. Acta 256, 9–16.

    Article  Google Scholar 

  63. Y.-Y. Xu, K. Pettersson, K. Blomberg, I. Hemmila, H. Mikola, and T. Lovgren (1992). Simultaneous quadruple-label fluorometric immunoassay of thyroid-stimulating hormone, 17α-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase MM isoenzyme in dried blood spots. Clin. Chem. 38, 2038–2043.

    PubMed  Google Scholar 

  64. D.-J. Qian, H.-G. Liu, H.-X. Huang, Q. Fu, and X.-S. Feng (2001). Europium complex nanoparticles: Preparation, characterization and optical properties. Mater. Lett. 51, 525–528.

    Article  Google Scholar 

  65. H. Härmä, T. Soukka, and T. Lövgren (2001). Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin. Chem. 47, 561–568.

    PubMed  Google Scholar 

  66. T. Soukka, K. Antonen, H. Harma, A. M. Pelkkikangas, P. Huhtinen, and T. Lovgren (2003). Highly sensitive immunoassay of free prostate-specific antigen in serum using europium(III) nanoparticle label technology. Clin. Chim. Acta 328, 45–58.

    Article  PubMed  Google Scholar 

  67. Q.-P. Qin, T. Lövgren, and K. Pettersson (2001). Development of highly fluorescent detection reagent for the construction of ultrasensitive immunoassays. Anal. Chem. 73, 1521–1529.

    Article  PubMed  Google Scholar 

  68. T. Matsuya, S. Tashiro, N. Hoshino, N. Shibata, Y. Nagasaki, and K. Kataoka (2003). A core-shell type fluorescent nanosphrere possessing reactive poly(ethylene glycol) tethered chains on the surface for zeptomole detection of protein in time-resolved fluorometric immunoassays. Anal. Chem. 75, 6124–6132.

    Article  PubMed  Google Scholar 

  69. Z. Ye, M. Tan, G. Wang, and J. Yuan (2004). Preparation, characterization, and time-resolved fluorometric application of silica-coated terbium(III) fluorescent nanoparticles. Anal. Chem. 76, 513–518.

    Article  PubMed  Google Scholar 

  70. X. Hai, M. Tan, G. Wang, Z. Ye, J. Yuan, and K. Matsumoto (2004). Preparation and a time-resolved fluoroimmunoassay application of new europium fluorescent nanoparticles. Anal. Sci. 20, 245–246.

    Article  PubMed  Google Scholar 

  71. E. Kahn, C. Tessier, G. Lizard, A. Petiet, J. C. Bernengo, D. Coulaud, C. Fourre, F. Frouin, O. Clement, J. R. Jourdain, E. Delain, F. Guiraud-Vitaux, N. Colas-Linhart, N. Siauve, C. A. Cuenod, G. Frija, and A. Todd-Pokropek (2003). Analysis of the distribution of MRI contrast agents in the livers of small animals by means of complementary microscopies. Cytometry A 51, 97–106.

    Article  PubMed  Google Scholar 

  72. A. Lobnik, N. Majeen, K. Niederkiter, and G. Uray (2001). Optical pH sensor based on the absorption of antenna generated europium luminescence by bromothymolblue in a sol–gel membrane. Sens. Actuators B 74, 200–206.

    Article  Google Scholar 

  73. G. E. Khalil (2004). Europium β-diketonate temperature sensors: Effects of ligands, matrix, and concentration. Rev. Sci. Instrum. 75, 192–206.

    Article  Google Scholar 

  74. S.-H. Li, W. T. Yuan, C. Q. Zhu, and J. G. Xu (2004). Species-differentiable sensing of phosphate-containing anions in neutral aqueous solution based on coordinatively unsaturated lanthanide complex probes. Anal. Biochem. 331, 235–242.

    Article  PubMed  Google Scholar 

  75. M. Sch{a}fering, M. Wu, and O. S. Wolfbeis (2004). Time-resolved fluorescent imaging of glucose. J. Fluorescence 14, 561–568.

    Article  Google Scholar 

  76. M. Wu, Z. Lin, and O. S. Wolfbeis (2003). Determination of the activity of catalase using a europium(III)-tetracycline-derived fluorescence substrate. Anal. Biochem. 320, 129–135.

    Article  PubMed  Google Scholar 

  77. J. C. DiCesare, J. Parker, S. N. Horne, J. Kita, R. Earni, and C. Peeples (2004). Progress in developing nerve agent sensors using combinatorial technique. Mat. Res. Soc. Symp. Proc. 787, 17–22.

    Google Scholar 

  78. A.-M. Casas-Hernandez, M. P. Aguilar-Caballos, and A. Gomez-Hens (2002). Application of time-resolved luminescence methodology to the determination of phthalate esters. Analytical letters 36, 1017–1027.

    Article  Google Scholar 

  79. S. Kulmala, M. Hakansson, A. M. Spehar, A. Nyman, J. Kankare, K. Loikas, T. Ala-Kleme, and J. Eskola (2002). Heterogeneous and homogeneous electrochemiluminoimmunoassays of hTSH at disposeable oxide-covered aluminum electrodes. Anal. Chim. Acta 458, 271–280.

    Article  Google Scholar 

  80. A. Westerlund-Karlsson, K. Suonpaa, M. Ankelo, J. Ilonen, M. Knip, and A. E. Hinkkanen (2003). Detection of autoantibodies to protein tyrosine phosphatase-like protein IA-2 with a novel time-resolved fluorimetric assay. Clin. Chem. 49, 916–923.

    Article  PubMed  Google Scholar 

  81. M. Ankelo, A. Westerlund-Karlsson, J. Ilonen, M. Knip, K. Savola, P. Kankaanpaa, L. Merio, H. Siitari, and A. Hinkkanen (2003). Time-resolved fluorometric assay for detection of autoantibodies to glutamic acid decarboxylase (GAD65). Clin. Chem. 49, 908–915.

    Article  PubMed  Google Scholar 

  82. A. Haese, V. Vaisanen, J. A. Finlay, K. Pettersson, H. G. Rittenhouse, A. W. Partin, D. J. Bruzek, L. J. Sokoll, H. Lilja, and D. W. Chan (2003). Standardization of two immunoassays for human glandular kallikrein 2. Clin. Chem. 49, 601–610.

    Article  PubMed  Google Scholar 

  83. J. R. Martins, C. C. Passerotti, R. M. Maciel, L. O. Sampaio, C. P. Dietrich, and H. B. Nader (2003). Practical determination of hyaluronan by a new noncompetitive fluorescence-based assay on serum of normal and cirrhotic patients. Anal. Biochem. 319, 65–72.

    Article  PubMed  Google Scholar 

  84. T. Korpim{a}ki, V. Hagren, E. C. Brockmann, and M. Tuomola (2004). Generic lanthanide fluoroimmunoassay for the simultaneous screening of 18 sulfonamides using an engineered antibody. Anal. Chem. 76, 3091–3098.

    Article  PubMed  Google Scholar 

  85. I. R. MacGegor and O. Drummond (2001). Species differences in the blood content of the normal cellular isoform of prion protein, PrPc, measured by time-resolved fluoroimmunoassay Vox. Sang. 81, 236–240.

    Article  Google Scholar 

  86. L. S. Yu, S. A. Reed, and M. H. Golden (2002). Time-resolved fluorescence immunoassay (TRFIA) for the detection of Escherichia coli O157:H7 in apple cider. J. Microb. Methods 49, 63–68.

    Article  Google Scholar 

  87. A. Kilkkinen, K. Stumpf, P. Pietinen, L. M. Valsta, H. Tapanainen, and H. Adlercreutz (2001). Determinants of serum enterolactone concentration. Am. J. Clin. Nutr. 73, 1094–1100.

    PubMed  Google Scholar 

  88. E. Brouwers, R. L’homme, N. Al Maharik, O. Lapcik, R. Hampl, K. Wahala, H. Mikola, and H. Adlercreutz (2003). Time-resolved fluoroimmunoassay for equol in plasma and urine. J. Steroid Biochem. Mol. Biol. 84, 577–587.

    Article  PubMed  Google Scholar 

  89. H. Skovbjerg, O. Noren, D. Anthonsen, J. Moller, and H. Sjöström (2002). Gliadin is a good substrate of several transglutaminase: Possible implication in the pathogenesis of coeliac disease. Scand. J. Gastroenterol. 37, 812–817.

    PubMed  Google Scholar 

  90. A. H. Peruski, L. H. Johnson III, and L. F. Persuki Jr. (2002). Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assay. J. Immunol. Methods 263, 35–41.

    Article  PubMed  Google Scholar 

  91. J. Yuan, M. Tan, and G. Wang (2004). Synthesis and luminescence properties of lanthanide(III) chelates with polyacid derivatives of thienyl-substituted terpyridine analogues. J. Luminesc. 10691.

  92. A.-M. Pelkkikangas (2004). Simple, rapid, and sensitive thyroid-stimulating hormone immunoassay using europium(III) nanoparticle label. Anal. Chim. Acta 517, 169–176.

    Article  Google Scholar 

  93. J. Feng, S. Guomin, A. Maquieira, M. E. Koivunen, B. Guo, B. D. Hammock, and I. M. Kennedy (2003). Functionalized europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine. Anal. Chem. 75, 5282–5286.

    Article  Google Scholar 

  94. G. C. Smith, E. J. Stenhouse, J. A. Crossley, D. A. Aitken, A. D. Cameron, and J. M. Connor (2002). Early-pregnancy origins of low birth weight. Nature 417, 916.

    Article  PubMed  Google Scholar 

  95. S. Rintam{a}ki, A. Saukkoriipi, P. Salo, A. Takala, and M. Leinonen (2002). Detection of Streptococcus pneumoniae DNA by using polymerase chain reaction and microwell hybridization with europium-labelled probes. J. Microbiol. Methods 50, 313–318.

    Article  PubMed  Google Scholar 

  96. C. G. Potter, Y. T. Liu, and D. C. Rees (2001). Factor V Leiden mutation screened by PCR and detected with lanthanide-labeled probes. Genet. Test. 5, 291–297.

    Article  PubMed  Google Scholar 

  97. H. Hakala, P. Ollikka, J. Degerholm, and J. Hovinen (2002). Oligonucleotide conjugates based on acyclonucleotides and their use in DNA hybridization assays. Tetrahedron 58, 8771–8777.

    Article  Google Scholar 

  98. M. Sj{o}roos, J. Ilonen, H. Reijonen, and T. Lovgren (1998). Time-resolved fluorometry based sandwich hybridization assay for HLA-DQA1 typing. Dis. Markers 14, 9–19.

    PubMed  Google Scholar 

  99. K. Watanabe, H. Arakawa, and M. Maeda (2002). Simultaneous detection of two verotoxin genes using dual-label time-resolved fluorescence immunoassay with duplex PCR. Luminescence 17, 123–129.

    Article  PubMed  Google Scholar 

  100. M. Samiotaki, M. Kwiatkowski, N. Ylitalo, and U. Landegren (1997). Seven-color time-resolved fluorescence hybridization analysis of human papilloma virus types. Anal. Biochem. 253, 156–161.

    Article  PubMed  Google Scholar 

  101. R. Kurek, A. Ylikoski, H. Renneberg, L. Konrad, G. Aumuller, S. J. Roddiger, N. Zamboglou, U. W. Tunn, and H. Lilja (2003). Quantitative PSA RT-PCR for preoperative staging of prostate cancer. Prostate 56, 263–269.

    Article  PubMed  Google Scholar 

  102. A. Tsourkas, M. A. Behlke, Y. Xu, and G. Bao (2003). Spectroscopic features of dual fluorescence/luminescence resonance energy-transfer molecular beacons. Anal. Chem. 75, 3697–3703.

    Article  PubMed  Google Scholar 

  103. K. Matsumoto, T. Nojima, H. Sano, and K. Majima (2002). Fluorescent lanthanide chelates for biological systems. Macromol. Symp. 186, 2001–2121.

    Article  Google Scholar 

  104. J. Nurmi, M. Kiviniemi, M. Kujanpää, M. Sjoroos, J. Ilonen, and T. Lövgren (2002). High-throughput genetic analysis using time-resolved fluorometry and closed-tube detection. Anal. Biochem. 299, 211–217.

    Article  Google Scholar 

  105. J. Nurmi, T. Wikman, M. Karp, and T. Lovgren (2002). High-performance real-time quantitative RT-PCR using lanthanide probes and a dual temperature hybridization assay. Anal. Chem. 74, 3525–3532.

    Article  PubMed  Google Scholar 

  106. X. Gao, C. K. Hsu, L. J. Heinz, J. Morin, Y. Shi, N. K. Shukla, D. L. Smiley, J. Xu, B. Zhong, and L. J. Slieker (2004). Europium-labeled melanin-concentrating hormone analogues: Ligands for measuring binding to melanin-concentrating hormone receptors 1 and 2. Anal. Biochem. 328, 187–195.

    Article  PubMed  Google Scholar 

  107. H. L. Handl, J. Vagner, H. I. Yamamura, V. J. Hruby, and R. J. Gillies (2004). Lanthanide-based time-resolved fluorescence of in cyto ligand–receptor interaction. Anal. Biochem. 330, 242–250.

    Article  PubMed  Google Scholar 

  108. D. Somjen, F. Kohen, B. Gayer, T. Kulik, E. Knoll, and N. Stern (2004). Role of putative membrane receptors in the effect of androgens on human vascular cell growth. J. Endocrin. 180, 97–106.

    Article  Google Scholar 

  109. O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka (1998). Thermal imaging of receptor-activated heat production in single cells. Biophys. J. 74, 82–89.

    PubMed  Google Scholar 

  110. H. Frang, V. M. Mukkala, R. Syysto, P. Ollikka, P. Hurskainen, M. Scheinin, and I. Hemmila (2003). Nonradioactive GTP binding assay to monitor activation of G protein-coupled receptor. Assay. Drug Dev. Technol. 1, 275–280.

    Article  PubMed  Google Scholar 

  111. K. Xu, A. S. Stern, W. Levin, A. Chua, and L. T. Vassilev (2003). A generic time-resolved fluorescence assay for serine/threonine kinase activity: Application to Cdc7/Dbf4. J. Biochem. Mol. Biol. 36, 421–425.

    PubMed  Google Scholar 

  112. Y. Li, R. T. Cummings, B. R. Cunningham, Y. Chen, and G. Zhou (2003). Homogeneous assays for adenosine 5’-monophosphate-activated protein kinase. Anal. Biochem. 321, 151–156.

    Article  PubMed  Google Scholar 

  113. J. A. Cruz-Aguado, Y. Chen, Z. Zhang, M. A. Brook, and J. D. Brennan (2004). Entrapment of Src protein tyrosine kinase in sugar-modified silica. Anal. Chem. 76, 4182–4188.

    Article  PubMed  Google Scholar 

  114. T. M. Sadler, M. Achilleos, S. Ragunathan, A. Pitkin, J. LaRocque, J. Morin, R. Annable, L. M. Greenberger, P. Frost, and Y. Zhang (2004). Development and comparison of two nonradioactive kinase assays for I kappa B kinase. Anal. Biochem. 326, 106–113.

    Article  PubMed  Google Scholar 

  115. L. Minor (2003). Receptor phosphorylation in a cell-based assay as a screen for receptor modulators. Am. Pharm. Rev. 6, 96–98.

    Google Scholar 

  116. J. Hirata, C. F. de Jong, M. M. van Dongen, J. Buijs, F. Ariese, H. Irth, and C. Gooijer (2004). A flow injection kinase assay system based on time-resolved fluorescence resonance energy-transfer detection in the millisecond range. Anal. Chem. 76, 4292–4298.

    Article  PubMed  Google Scholar 

  117. J. Whitfields, K. Harada, C. Bardelle, and J. M. Staddon (2003). High-throughput methods to detect dimerization of Bcl-2 family proteins. Anal. Biochem. 322, 170–178.

    Article  PubMed  Google Scholar 

  118. K. Xu, C. Belunis, W. Chu, D. Weber, F. Podlaski, K. S. Huang, S. I. Reed, and L. T. Vassilev (2003). Protein–protein interactions involved in the recognition of p27 by E3 ubiquitin ligase. Biochem. J. 371, 957–964.

    Article  PubMed  Google Scholar 

  119. V. Leblanc, V. Delaunay, L. J. Claude, F. Gas, G. Mathis, J. Grassi, and E. May (2002). Homogeneous time-resolved fluorescence assay for identifying p53 interactions with its protein partners, directly in a cellular extract. Anal. Biochem. 308, 247–254.

    Article  PubMed  Google Scholar 

  120. D. Maurel, J. Kniazeff, G. Mathis, E. Trinquet, J. P. Pin, and H. Ansanay (2004). Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal. Biochem. 329, 253–262.

    Article  PubMed  Google Scholar 

  121. D. Ramsay, I. C. Carr, J. Pediani, J. F. Lopez-Gimenez, R. Thurlow, M. Fidock, and G. Milligan (2004). High-affinity interactions between human α < eqid1 > 1L adrenoceptor. Mol. Pharmacol. 66, 228–239.

    Article  PubMed  Google Scholar 

  122. L. Gazi, J. F. Lopez-Gimenez, M. P. Rudiger, and P. G. Strange (2003). Constitutive oligomerization of human D2 dompamine receptors expressed in Spodoptera frugiperda 9 (Sf9) and in HEK293 cells. Analysis using co-immunoprecipitation and time-resolved fluorescence resonance energy transfer. Eur. J. Biochem. 270, 3928–3938.

    Article  PubMed  Google Scholar 

  123. J. J. Carrillo, J. Pediani, and G. Milligan (2003). Dimers of class A G protein-coupled receptors function via agonist-mediated trans-activation of associated G proteins. J. Biol. Chem. 278, 42578–42587.

    Article  PubMed  Google Scholar 

  124. J. Liu, K. S. Knappenberger, H. Kack, G. Andersson, E. Nilsson, C. Dartsch, and C. W. Scott (2003). A homogeneous in vitro functional assay for estrogen receptors: Coactivator recruitment. Mol. Endocrinol. 17, 346–355.

    Article  PubMed  Google Scholar 

  125. A. K. Galande, K. S. Bramlett, T. P. Burris, J. L. Wittliff, and A. F. Spatola (2004). Thioether side chain cyclization for helical peptide formation: Inhibitors of estrogen receptor–coactivator interactions. J. Pept. Res. 63, 297–302.

    Article  PubMed  Google Scholar 

  126. A. L. Kung, S. D. Zabludoff, D. S. France, S. J. Freedman, E. A. Tanner, A. Vieira, S. Cornell-Kennon, J. Lee, B. Wang, J. Wang, K. Memmert, H. U. Naegeli, F. Petersen, M. J. Eck, K. W. Bair, A. W. Wood, and D. M. Livingston (2004). Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell 6, 33–43.

    Article  PubMed  Google Scholar 

  127. G. Allicotti, E. Borras, and C. Prinilla (2003). A time-resolved fluorescence immunoassay (DELFIA) increases the sensitivity of antigen-driven cytokine detection. J. Immunoassay Immunochem. 24, 345–358.

    Article  PubMed  Google Scholar 

  128. H.-G. Zerves, J. C. Peter, M. Link, H. Gubler, and G. Scheel (2002). A multiparameter screening assay for assess the cytokine-induced expression of endothelial cell adhesion molecules. Anal. Biochem. 304, 166–173.

    Article  PubMed  Google Scholar 

  129. K. Enomoto, Y. Aono, T. Mitsugi, K. Takahashi, R. Suzuki, M. Preaudat, G. Mathis, G. Kominami, and H. Takemoto (2000). High throughput screening for human interferon-γ production inhibitor using homogeneous time-resolved fluorescence. J. Biomol. Screen. 5, 263–268.

    PubMed  Google Scholar 

  130. E. Heyduk and T. Heyduk (1999). Architecture of a complex between the σ7 subunit of Escherichia coli RNA polymerase and the nontemplate strand oligonucleotide. Luminescence resonance energy transfer study. J. Biol. Chem. 274, 3315–3322.

    Article  PubMed  Google Scholar 

  131. V. Bergendahl, T. Heyduk, and R. R. Burgess (2003). Luminescence resonance energy transfer-based high-throughput screening assay for inhibitors of essential protein–protein interactions in bacterial RNA polymerase. Appl. Environ. Microbiol. 69, 1492–1498.

    Article  PubMed  Google Scholar 

  132. V. Zhou, S. Han, A. Brinker, H. Klock, J. Caldwell, and X. J. Gu (2004). A time-resolved fluorescence resonance energy transfer-based HTS assay and a surface plasmon resonance-based binding assay for heat shock protein 90 inhibitors. Anal. Biochem. 331, 349–357.

    Article  PubMed  Google Scholar 

  133. W. Aherne, A. Maloney, C. Prodromou, M. G. Rowlands, A. Hardcastle, K. Boxall, P. Clarke, M. I. Walton, L. Pearl, and P. Workman (2003). Assays for HSP90 and inhibitors. Methods Mol. Med. 85, 149–161.

    PubMed  Google Scholar 

  134. H. Butcher, W. Kennette, O. Collins, J. Demoor, and J. Koropatnick (2003). A sensitive time-resolved fluorescent immunoassay for metallothionein protein. J. Immunol. Methods 272, 247–256.

    Article  PubMed  Google Scholar 

  135. S. E. Barrie, E. Eno-Amooquaye, A. Hardcastle, G. Platt, J. Richards, D. Bedford, P. Workman, W. Aherne, S. Mittnacht, and M. D. Garrett (2003). High-throughput screening for the identification of small-molecule inhibitors of retinoblastoma protein phosphorylation in cells. Anal. Biochem. 320, 66–74.

    Article  PubMed  Google Scholar 

  136. S. M. Kopalakrishnan, J. Karvinen, J. L. Kofron, D. J. Burns, and U. Warrior (2002). Application of micro arrayed compound screening (μARCS) to identify inhibitors of caspase-3. J. Biomo. Screen. 7, 317–323.

    Google Scholar 

  137. M. Pr{e}audat, J. Ouled-Diaf, B. Alpha-Bazin, G. Mathis, T. Mitsugi, Y. Aono, K. Takahashi, and H. Takemoto (2002). A homogeneous capase-3 activity assay using HTRF technology. J. Biomol. Screen. 7, 267–274.

    Article  PubMed  Google Scholar 

  138. H. Bazin, S. Guillemer, and G. Mathis (2002). Homogeneous phosphodiesterase and hybridization assays using europium cryptate:Oligonucleotide conjugates. J. Fluoresc. 12, 245–248.

    Article  Google Scholar 

  139. M. Gabourdes, V. Bourgine, G. Mathis, H. Bazin, and B. Alpha-Bazin (2004). A homogeneous time-resolved fluorescence detection of telomerase activity. Anal. Biochem. 333, 105–113.

    Article  PubMed  Google Scholar 

  140. M. D. Boisclair, C. McClure, S. Josiah, S. Glass, S. Bottomley, S. Kamerkar, and I. Hemmilä (2000). Development of a ubiquitin transfer assay for high throughput screening by fluorescence resonance energy transfer. J. Biomol. Screen. 5, 319–328.

    Article  PubMed  Google Scholar 

  141. N. Yabuki, S. Watanabe, T. Kudoh, S. Nihira, and C. Miyamato (1999). Application of homogeneous time-resolved fluorescence (HTRFTM) to monitor poly-ubiquitination of wild-type p53. Comb. Chem. High troughput. Screen. 2, 279–287.

    Google Scholar 

  142. A. C. Hamilton, J. Inglese, and M. Ferrer (2003). A PDZ domain-based assay for measuring HIV protease activity: Assay design considerations. Protin. Sci. 12, 458–467.

    Article  Google Scholar 

  143. A. Gharehbaghian, K. M. Haque, C. Truman, J. Newman, and B. A. Bradley (2002). Quantitation of natural killer cell precursors in man. J. Immunol. Methods 260, 69–77.

    Article  PubMed  Google Scholar 

  144. K. Blomberg, R. Hautala, J. Lövgren, V. M. Mukkala, C. Lindqvist, and K. Akerman (1996). Time-resolved fluorometric assay for natural killer activity using targets cells labelled with a fluorescence enhancing ligand. J. Immunol. Methods 193, 199–206.

    Article  PubMed  Google Scholar 

  145. D. Waddleton, C. Ramachandran, and Q. Wang (2002). Development of a time-resolved fluorescent assay for measuring tyrosine-phosphorylated proteins in cells. Anal. Biochem. 309, 150–157.

    Article  PubMed  Google Scholar 

  146. D. Somjen, S. Katzburg, O. Sharon, A. M. Kaye, B. Gayer, F. Kohen, D. Hendel, and G. H. Posner (2004). Modulation of response to estrogen in cultured human female bone cells by a non-calcemic vitamin D analog: Changes in nuclear and membranal binding. J. Steroid Biochem. Mol. Biol. 89–90, 393–395.

    Article  PubMed  Google Scholar 

  147. V. Marchi-Artzner, M. J. Brienne, T. Gulik-Krzywicki, J. C. Dedieu, and J. M. Lehn (2004). Selective complexation and transport of europium ions at the interface of vesicles. Chemistry. 10, 2342–2350.

    Article  PubMed  Google Scholar 

  148. T. Chakrabasty, M. Xiao, R. Cooke, and P. R. Selvin (2002). Holding two heads together: Stability of the myosin II rod measured by resonance energy transfer between the heads. Proc. Natl. Acad. Sci. U.S.A. 99, 6011–6016.

    Article  PubMed  Google Scholar 

  149. C. F. Becker, D. Clayton, G. Shapovalov, H. A. Lester, and G. G. Kochendoerfer (2004). On-resin assembly of a linkerless lanthanide(III)-based luminescence label and its application to the total synthesis of site-specifically labeled mechanosensitive channels. Bioconjug. Chem. 15, 1118–1124.

    Article  PubMed  Google Scholar 

  150. M. E. Neville, K. W. Richau, L. T. Boni, L. E. Pflug, R. J. Robb, and M. C. Popescu (2000). A comparison of biodistribution of liposomal and soluble IL-2 by a new method based on time-resolved fluorometry of europium. Cytokine 12, 1702–1711.

    Article  PubMed  Google Scholar 

  151. N. S. Ivey, E. N. Martin Jr, W. M. Scheld, and B. R. Nathan (2005). A new method for measuring blood–brain barrier permeability demonstrated with europium-bound albumin during experimental lipopolysaccharide (LPS) induced meningitis in the rat. J. Neurosci. Methods 142, 91–95.

    Article  PubMed  Google Scholar 

  152. A. E. Soini, A. Kuusisto, N. J. Meltola, E. Soini, and L. Seveus (2003). A new technique for multiparametric imaging microscopy: Use of long decay time photoluminescent labels enables multiple color immunocytochemistry with low channel-to-channel crosstalk. Microsc. Res. Technol. 62, 396–407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Hemmilä.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmilä, I., Laitala, V. Progress in Lanthanides as Luminescent Probes. J Fluoresc 15, 529–542 (2005). https://doi.org/10.1007/s10895-005-2826-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2826-6

Keywords

Navigation