Skip to main content
Log in

A Novel Fluorescent Probe for the Detection of Cyanide Ions in Solutions and Studies on Its Biophysical Interactions with ctDNA and Proteases

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new cationic indolium based styryl dye (Ci) as a fluorescent probe was synthesized and its anions selectivity/sensitivity properties/molecular interactions with protease enzymes (pepsin/trypsin) and ctDNA has been studied by spectroscopic and computational methods. The fluorescence measurements at different temperatures indicated that quenching mechanism of enzymes by Ci was static. ΔH and ΔS data pointed out electrostatic/hydrophobic interactions with pepsin, and also hydrogen bonds/van der Waals forces with trypsin of Ci. According to Förster’s non-radiative energy transfer, binding distances (r) were calculated as 3.53/3.27 nm for pepsin/trypsin. It was also investigated that groove binding is effective in interaction with ctDNA. The results were supported with molecular docking analyzes which have same tendency. Ci has been demonstrated hypsochromic effect with a decrease in polarity of solvents and it showed highly selective colorimetric and fluorometric sensing behavior for cyanide in organic solvent and in aqueous solution. 1H NMR titration was performed to examine the interaction mechanism between Ci and cyanide. The LOD values of cyanide ion were reported as 4.87 × 10–9 M and 9.70 × 10–7 M in DMSO and DMSO/H2O binary mixture, respectively. In addition, sensitivity of Ci as a chemosensor to cyanide was investigated in bitter almond samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Li Y, Wei F, Lu Y, He S, Zhao L, Zeng X (2013) Novel mercury sensor based on water soluble styrylindolium dye. Dyes Pigm 96:424–429. https://doi.org/10.1016/j.dyepig.2012.09.010

    Article  CAS  Google Scholar 

  2. Gu J, Rao U, Fabio A, Monte L, Kramer T, von Haußen RH, Hölzer J, Goetschy-Meyer V, Mall G, Hilger I, Czech C, Schmidt B (2012) 2-Styrylindolium based fluorescent probes visualize neurofibrillary tangles in Alzheimer’s disease. Bioorg Med Chem Lett 22:7667–7671. https://doi.org/10.1016/j.bmcl.2012.09.109

    Article  CAS  PubMed  Google Scholar 

  3. Metsov S, Simov D, Stoyanov S, Nikolov P (1990) Photophysical characteristics of some 2-styrylindolium dyes. Dyes Pigm 13:11–19. https://doi.org/10.1016/0143-7208(90)80009-E

    Article  CAS  Google Scholar 

  4. Promchat A, Rashatasakhon P, Sukwattanasinitt M (2017) A novel indolium salt as a highly sensitive and selective fluorescent sensor for cyanide detection in water. J Hazard Mater 329:255–261. https://doi.org/10.1016/j.jhazmat.2017.01.024

    Article  CAS  PubMed  Google Scholar 

  5. Wang S, Feia X, Guoa J, Yanga Q, Lia Y, Song Y (2016) A novel reaction-based colorimetric and ratiometric fluorescent sensor for cyanide anion with a large emission shift and high selectivity. Talanta 148:229–236. https://doi.org/10.1016/j.talanta.2015.10.058

    Article  CAS  PubMed  Google Scholar 

  6. Shiraishi Y, Itoh M, Hirai T (2011) Colorimetric response of spiropyran derivative for anions in aqueous or organic media. Tetrahedron 67:891–897. https://doi.org/10.1016/j.tet.2010.12.021

    Article  CAS  Google Scholar 

  7. Perry A, Miles D (2016) An off-the-shelf sensor for colourimetric detection of sulfide. Tetrahedron Lett 57:5788–5793. https://doi.org/10.1016/j.tetlet.2016.11.040

    Article  CAS  Google Scholar 

  8. Liu J, Sun YQ, Huo Y, Zhang H, Wang L, Zhang P, Song D, Shi Y, Guo W (2014) Simultaneous fluorescence sensing of Cys and GSH from different emission channels. J Am Chem Soc 136:574–577. https://doi.org/10.1021/ja409578w

    Article  CAS  PubMed  Google Scholar 

  9. Wu WL, Ma HL, Huang MF, Miao JY, Zhao BX (2017) Mitochondria-targeted ratiometric fluorescent probe based on FRET for bisulfite. Sens Actuators B 241:239–244. https://doi.org/10.1016/j.snb.2016.10.028

    Article  CAS  Google Scholar 

  10. Yu Q, Zhang KY, Liang H, Zhao Q, Yang T, Liu S, Zhang C, Shi Z, Xu W, Huang W (2015) Dual-emissive nanohybrid for ratiometric luminescence and lifetime imaging of intracellular hydrogen sulfide. ACS Appl Mater Interfaces 7:5462–5470. https://doi.org/10.1021/am5091534

    Article  CAS  PubMed  Google Scholar 

  11. Gupta SP, Gupta SD (2020) Cancer-leading proteases structures, functions, and inhibition. Chapter 1, Elsevier:  India

  12. Pinto MR, Schanze KS (2004) Amplified fluorescence sensing of protease activity with conjugated polyelectrolytes. Proc Natl Acad Sci 101:7505–7510. https://doi.org/10.1073/pnas.0402280101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li X, Ni T (2016) Binding of glutathione and melatonin to pepsin occurs via different binding mechanisms. Eur Biophys J 45:165–174. https://doi.org/10.1007/s00249-015-1085-y

    Article  CAS  PubMed  Google Scholar 

  14. Song W, Yu Z, Hu X, Liu R (2015) Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling. Spectrochim Acta Part A 137:286–293. https://doi.org/10.1016/j.saa.2014.08.037

    Article  CAS  Google Scholar 

  15. Botti V, Cesaretti A, Ban Z, Crnolatac I, Consiglio G, Elisei F, Piantanida I (2019) Fine structural tuning of styryl-based dyes for f luorescence and CD-based sensing of various ds-DNA/RNA sequences. Org Biomol Chem 17:8243–8258. https://doi.org/10.1039/c9ob01186b

    Article  CAS  PubMed  Google Scholar 

  16. Barman S, Das J, Biswas S, Maiti TK, Singh NP (2017) A spiropyran-coumarin platform: An environment sensitive photoresponsive drug delivery system for efficient cancer therapy. J Mater Chem B 5:3940–3944. https://doi.org/10.1039/c7tb00379j

    Article  CAS  PubMed  Google Scholar 

  17. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Plenum, New York

    Book  Google Scholar 

  18. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5651. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  20. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206. https://doi.org/10.1016/0009-2614(89)87234-3

    Article  CAS  Google Scholar 

  21. Frisch MJ et al (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  22. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717. https://doi.org/10.1063/1.1394921

    Article  CAS  Google Scholar 

  23. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464. https://doi.org/10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  24. Rose Y, Duarte JM, Lowe R et al (2021) RCSB protein data bank: architectural advances towards integrated searching and efficient access to macromolecular structure data from the PDB archive. J Mol Biol 433:166704. https://doi.org/10.1016/j.jmb.2020.11.003

    Article  CAS  PubMed  Google Scholar 

  25. Accelrys Software Inc (2013) Discovery Studio Modeling Environment, Release 3.5. Accelrys Software Inc, San Diego

    Google Scholar 

  26. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nural Y, Karasu E, Keleş E et al (2022) Synthesis of novel acylthioureas bearing naphthoquinone moiety as dual sensor for high-performance naked-eye colorimetric and fluorescence detection of CN and F ions and its application in water and food samples. Dyes Pigm 198:110006. https://doi.org/10.1016/j.dyepig.2021.110006

    Article  CAS  Google Scholar 

  28. Park JH, Manivannan R, Jayasudha P, Son YA (2020) Spontaneous optical response towards cyanide ion in water by a reactive binding site probe. Spectrochim Acta Part A 233:118–190. https://doi.org/10.1016/j.saa.2020.118190

    Article  CAS  Google Scholar 

  29. Sante OMDI (2004) World Health Organization, WWprogramme, WHO Staff, Zdrowia SO, WHO, Guidelines for drinking-water quality, Vol 1

  30. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170. https://doi.org/10.1021/bi00745a020

    Article  CAS  PubMed  Google Scholar 

  31. Mohseni-Shahri FS, Moeinpour F, Nosrati M (2018) Spectroscopy and molecular dynamics simulation study on the interaction of sunset yellow food additive with pepsin. Int J Biol Macromol 115:273–280. https://doi.org/10.1016/j.ijbiomac.2018.04.080

    Article  CAS  PubMed  Google Scholar 

  32. Bi S, Song D, Tian Y, Zhou X, Liu Z, Zhang H (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta Part A 61:629–636. https://doi.org/10.1016/j.saa.2004.05.028

    Article  CAS  Google Scholar 

  33. Li X, Geng M (2016) Probing the binding of procyanidin B3 to trypsin and pepsin: A multi-technique approach. Int J Biol Macromol 85:168–178. https://doi.org/10.1016/j.ijbiomac.2015.12.075

    Article  CAS  PubMed  Google Scholar 

  34. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 20:3096–3102. https://doi.org/10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  35. Zeng HJ, Yang D, Hua GZ, Yang R, Qu LB (2016) Studies on the binding of pepsin with three pyrethroid insecticides by multi-spectroscopic approaches and molecular docking. J Mol Recognit 29:476–484. https://doi.org/10.1002/jmr.2547

    Article  CAS  PubMed  Google Scholar 

  36. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Physics 2:55–75

    Article  Google Scholar 

  37. Lian S, Wang G, Zhou L, Yanga D (2013) Fluorescence spectroscopic analysis on interaction of fleroxacin with pepsin. Luminescence 28:967–972. https://doi.org/10.1002/bio.2469

    Article  CAS  PubMed  Google Scholar 

  38. Zhang HM, Zhou QH, Wang YQ (2010) Studies on the interactions of 2, 4-dinitrophenol and 2, 4-dichlorphenol with trypsin. J Fluoresc 20:507–516. https://doi.org/10.1007/s10895-009-0574-8

    Article  CAS  PubMed  Google Scholar 

  39. Moradi S, Ahmadi P, Karami C, Farhadian N, Balaei F, Ansari M, Shahlaei M (2021) Evaluation of the effects of isoniazid and rifampin on the structure and activity of pepsin enzyme by multi spectroscopy and molecular modeling methods. Spectrochim Acta Part A 253:119523. https://doi.org/10.1016/j.saa.2021.119523

    Article  CAS  Google Scholar 

  40. Zhu S, Bai X, Zhu J, Li W, Wang B (2021) Multi-spectral techniques and molecular docking to investigation of the interaction between ferulic acid and pepsin. Spectrochim Acta Part A 251:119442. https://doi.org/10.1016/j.saa.2021.119442

    Article  CAS  Google Scholar 

  41. Matei I, Hillebrand M (2010) Interaction of kaempferol with human serum albumin: A fluorescence and circular dichroism study. J Pharm Biomed Anal 51:768–773. https://doi.org/10.1016/j.jpba.2009.09.037

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Ni T (2016) Probing the binding mechanisms of α-tocopherol to trypsin and pepsin using isothermal titration calorimetry, spectroscopic, and molecular modeling methods. J Biol Phys 42:415–434. https://doi.org/10.1007/s10867-016-9415-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siddigui MF, Khan MS, Husain FM, Bano B (2019) Deciphering the binding of carbendazim (fungicide) with human serum albumin: A multispectroscopic and molecular modelling studies. J Biomol Struct Dyn 37:2230–2241. https://doi.org/10.1080/07391102.2018.1481768

    Article  CAS  Google Scholar 

  44. Wang Q, Zhang SR, Ji X (2014) Investigation of interaction of antibacterial drug sulfamethoxazole with human serum albumin by molecular modeling and multi-spectroscopic method. Spectrochim Acta Part A 124:84–90. https://doi.org/10.1016/j.saa.2013.12.100

    Article  CAS  Google Scholar 

  45. Li X, Li P (2016) Study on the interaction of β-carotene and astaxanthin with trypsin and pepsin by spectroscopic techniques. Luminescence 31:782–792. https://doi.org/10.1002/bio.3024

    Article  CAS  PubMed  Google Scholar 

  46. Shahabadi N, Falsafi M, Maghsudi M (2017) DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques. Nucleosides, Nucleotides Nucleic Acids 36:49–65. https://doi.org/10.1080/15257770.2016.1218021

    Article  CAS  PubMed  Google Scholar 

  47. Soudani S, Kaabi K, Jelsch C, Mi JX, Lefebvre F, Nasr CB (2021) Synthesis, X-ray characterisation, hirshfeld surface and theoretical studies of a novel Cd(II) coordination compound bearing 2,3- pyridinedicarboxylic acid. Res Square. https://doi.org/10.21203/rs.3.rs-475047/v1

    Google Scholar 

  48. Mary YS, Varghese HT, Panicker CY, Girisha M, Sagar BK, Yathirajan HS, Al-Saadi AA, Alsenoy CV (2015) Vibrational spectra, HOMO, LUMO, NBO, MEP analysis and molecular docking study of 2,2-diphenyl-4-(piperidin-1-yl)butanamide. Spectrochim Acta Part A 150:543–556. https://doi.org/10.1016/j.saa.2015.05.090

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The numerical calculations reported were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Funding

This study was partially supported by Hacettepe University Scientific Research Fund (Project number: FBA2017-12854).

Author information

Authors and Affiliations

Authors

Contributions

Bensu Doyuran: Investigation, Writing-original draft. Elmas Gökoğlu: Data curation, Review & Editing. Ayman Zouitini: Synthesis, Investigation, Characterization. Ergin Keleş: Synthesis, Investigation, Characterization. Tugba Taskin-Tok: The theoretical calculations. Nurgül Seferoğlu: The theoretical calculations. Zeynel Seferoğlu: Data curation, Writing-original draft.

Corresponding author

Correspondence to Elmas Gökoğlu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 621 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doyuran, B., Gökoğlu, E., Zouitini, A. et al. A Novel Fluorescent Probe for the Detection of Cyanide Ions in Solutions and Studies on Its Biophysical Interactions with ctDNA and Proteases. J Fluoresc 32, 2173–2188 (2022). https://doi.org/10.1007/s10895-022-03014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03014-0

Keywords

Navigation