Skip to main content
Log in

Ribbon Aromaticity of Double-Chain B2n C2H2 Clusters (n = 2–9): A First Principle Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The double-chain boron ribbon should be taken as an element geometric unit for the construction of boron fullerenes and sheets. In this work, a series of B2n C2H2 clusters (n = 2–9) were extensively investigated using the density functional theory and the coupled cluster method. The most stable structures of B2n C2H2 are planar double-chain nanoribbon with lengths from 3.9 to 15.0 Å. The adaptive natural density partitioning analyses show that there exist conjugated multi-center π bonds along the nanoribbons. The two-dimensional contour pictures of the nucleus-independent chemical shifts reveal that B2n C2H2 clusters have ribbon aromaticity that fluctuates along the ribbons. This finding will provide new insights on the boron fullerenes and the two-dimensional boron sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, and L. S. Wang (2006). Coord. Chem. Rev. 250, 2811.

    Article  CAS  Google Scholar 

  2. I. Boustani (1997). Phys. Rev. B. 55, 16426.

    Article  CAS  Google Scholar 

  3. J. E. Fowler and J. M. Ugalde (2000). J. Phys. Chem. A. 104, 397.

    Article  CAS  Google Scholar 

  4. H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, and L. S. Wang (2003). Angew. Chem. Int. Ed. 42, 6004.

    Article  CAS  Google Scholar 

  5. H. J. Zhai, B. Kiran, J. Li, and L. S. Wang (2003). Nat. Mater. 2, 827.

    Article  CAS  Google Scholar 

  6. J. I. Aihara, H. Kanno, and T. Ishida (2005). J. Am. Chem. Soc. 127, 13324.

    Article  CAS  Google Scholar 

  7. B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, and L. S. Wang (2005). Proc. Natl. Acad. Sci. USA 102, 961.

    Article  CAS  Google Scholar 

  8. D. Yu. Zubarev and A. I. Boldyrev (2007). J. Comput. Chem. 28, 251.

    Article  CAS  Google Scholar 

  9. E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes, and R. Ahlrichs (2007). Angew. Chem. Int. Ed. 46, 8503.

    Article  CAS  Google Scholar 

  10. A. P. Sergeeva, D. Yu. Zubarev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang (2008). J. Am. Chem. Soc. 130, 7244.

    Article  CAS  Google Scholar 

  11. W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev (2010). Nat. Chem. 2, 202.

    Article  Google Scholar 

  12. A. P. Sergeeva, B. B. Averkiev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang (2011). J. Chem. Phys. 134, 224304.

    Article  Google Scholar 

  13. A. P. Sergeeva, Z. A. Piazza, C. Romanescu, W. L. Li, A. I. Boldyrev, and L. S. Wang (2012). J. Am. Chem. Soc. 134, 18065.

    Article  CAS  Google Scholar 

  14. A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev (2014). Acc. Chem. Res. 47, 1349.

    Article  CAS  Google Scholar 

  15. Z. A. Piazza, I. A. Popov, W. L. Li, R. Pal, X. C. Zeng, A. I. Boldyrev, and L. S. Wang (2014). J. Chem. Phys. 141, 034303.

    Article  Google Scholar 

  16. W. L. Li, Y. F. Zhao, H. S. Hu, J. Li, and L. S. Wang (2014). Angew. Chem. Int. Ed. 126, 5646.

    Article  Google Scholar 

  17. W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li, and L. S. Wang (2014). J. Am. Chem. Soc. 136, 12257.

    Article  CAS  Google Scholar 

  18. Q. Chen, G. F. Wei, W. J. Tian, H. Bai, Z. P. Liu, H. J. Zhai, and S. D. Li (2014). Phys. Chem. Chem. Phys. 16, 18282.

    Article  CAS  Google Scholar 

  19. H. Bai, Q. Chen, H. J. Zhai, and S. D. Li (2015). Angew. Chem. Int. Ed. 54, 941.

    Article  CAS  Google Scholar 

  20. J. K. Olson and A. I. Boldyrev (2013). J. Phys. Chem. A. 117, 1614.

    Article  CAS  Google Scholar 

  21. A. N. Alexandrova, E. Koyle, and A. I. Boldyrev (2006). J. Mol. Model. 12, 569.

    Article  CAS  Google Scholar 

  22. N. G. Szwacki, V. Weber, and C. J. Tymczak (2009). Nanoscale Res. Lett. 4, 1085.

    Article  Google Scholar 

  23. Q. Chen, H. Bai, J. C. Guo, C. Q. Miao, and S. D. Li (2011). Phys. Chem. Chem. Phys. 13, 20620.

    Article  CAS  Google Scholar 

  24. D. Z. Li, H. G. Lu, and S. D. Li (2012). J. Mol. Model. 18, 3161.

    Article  CAS  Google Scholar 

  25. Q. Chen and S. D. Li (2011). J. Clust. Sci. 22, 513.

    Article  CAS  Google Scholar 

  26. H. Bai, Q. Chen, Y. F. Zhao, Y. B. Wu, H. G. Lu, J. Li, and S. D. Li (2013). J. Mol. Model. 19, 1195.

    Article  CAS  Google Scholar 

  27. W. J. Tian, H. Bai, H. G. Lu, Y. B. Wu, and S. D. Li (2013). J. Clust. Sci. 24, 1127.

    Article  CAS  Google Scholar 

  28. D. Z. Li, Q. Chen, Y. B. Wu, H. G. Lu, and S. D. Li (2012). Phys. Chem. Chem. Phys. 14, 14769.

    Article  CAS  Google Scholar 

  29. W. L. Li, C. Romanescu, T. Jian, and L. S. Wang (2012). J. Am. Chem. Soc. 134, 13228.

    Article  CAS  Google Scholar 

  30. H. J. Zhai, Q. Chen, H. Bai, H. G. Lu, W. L. Li, S. D. Li, and L. S. Wang (2013). J. Chem. Phys. 139, 174301.

    Article  Google Scholar 

  31. H. Bai, Q. Chen, C. Q. Miao, Y. W. Mu, Y. B. Wu, H. G. Lu, H. J. Zhai, and S. D. Li (2013). Phys. Chem. Chem. Phys. 15, 18872.

    Article  CAS  Google Scholar 

  32. H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang (2014). Nat. Chem. 6, 727.

    CAS  Google Scholar 

  33. Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. Bai, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, S. D. Li, J. Li, and L. S. Wang (2015). ACS Nano. 9, 754.

    Article  CAS  Google Scholar 

  34. L. Wang, J. Zhao, F. Li, and Z. Chen (2010). Chem. Phys. Lett. 501, 16.

    Article  CAS  Google Scholar 

  35. F. Li, P. Jin, D. Jiang, L. Wang, S. B. Zhang, J. Zhao, and Z. Chen (2013). J. Chem. Phys. 136, 074302.

    Article  Google Scholar 

  36. S. Polad and M. Ozaybcd (2013). Phys. Chem. Chem. Phys. 15, 19819.

    Article  CAS  Google Scholar 

  37. J. Lv, Y. Wang, L. Zhu, and Y. Ma (2014). Nanoscale 6, 11692.

    Article  CAS  Google Scholar 

  38. H. Lu and S.-D. Li (2013). J. Chem. Phys. 139, 2243071.

    Google Scholar 

  39. H. Tang and S. Ismail-Beigi (2007). Phys. Rev. Lett. 99, 115501.

    Article  Google Scholar 

  40. X. Yang, Y. Ding, and J. Ni (2008). Phys. Rev. B 77, 041402.

    Article  Google Scholar 

  41. X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng (2012). ACS Nano 6, 7443.

    Article  CAS  Google Scholar 

  42. E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson (2012). Nano Lett. 12, 2441.

    Article  CAS  Google Scholar 

  43. H. G. Lu, Y. W. Mu, H. Bai, Q. Chen, and S. D. Li (2013). J. Chem. Phys. 138, 024701.

    Article  Google Scholar 

  44. Y. Liu, E. S. Penev, and B. I. Yakobson (2013). Angew. Chem. Int. Ed. 52, 3156.

    Article  CAS  Google Scholar 

  45. H. Liu, J. Gao, and J. Zhao (2013). Sci. Rep. 3, 3238.

    Google Scholar 

  46. H. Bai and S.-D. Li (2011). J. Clust. Sci. 22, 525.

    Article  CAS  Google Scholar 

  47. P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. V. E. Hommes (1996). J. Am. Chem. Soc. 118, 6317.

    Article  CAS  Google Scholar 

  48. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. V. R. Schleyer (2005). Chem. Rev. 105, 3842–3888.

    Article  CAS  Google Scholar 

  49. D. Yu. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207.

    Article  CAS  Google Scholar 

  50. I. A. Popov, K. V. Bozhenko, and A. I. Boldyrev (2012). Nano Res. 5, 117–123.

    Article  CAS  Google Scholar 

  51. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chem. Phys. 72, 650.

    Article  CAS  Google Scholar 

  52. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  53. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B. 37, 785.

    Article  CAS  Google Scholar 

  54. J. Cizek (1969). Adv. Chem. Phys. 14, 35.

    CAS  Google Scholar 

  55. G. E. Scuseria and H. F. Schaefer (1989). J. Chem. Phys. 90, 3700.

    Article  CAS  Google Scholar 

  56. R. J. Bartlett and M. Musial (2007). Rev. Mod. Phys. 79, 291.

    Article  CAS  Google Scholar 

  57. M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub (1998). J. Chem. Phys. 108, 4439.

    Article  CAS  Google Scholar 

  58. R. Bauernschmitt and R. Ahlrichs (1996). Chem. Phys. Lett. 256, 454.

    Article  CAS  Google Scholar 

  59. K. Wolinski, J. F. Hilton, and P. Pulay (1990). J. Am. Chem. Soc. 112, 8251–8260.

    Article  CAS  Google Scholar 

  60. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et al. Gaussian 09, D.01 (Gaussian, Inc., Wallingford, CT, 2009).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants Nos. 21373130 and 21473106). We also thank the High-Performance Computing Platform of Shanxi University for funding the computer time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haigang Lu or Si-Dian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SY., Bai, H., Chen, Q. et al. Ribbon Aromaticity of Double-Chain B2n C2H2 Clusters (n = 2–9): A First Principle Study. J Clust Sci 26, 2043–2050 (2015). https://doi.org/10.1007/s10876-015-0903-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0903-9

Keywords

Navigation