Skip to main content
Log in

Configurations and characteristics of boron and B36 clusters

  • Review
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Characteristics of the ring and linear structures of the boron cluster B36 and its doped clusters were investigated with DFT/B3LYP/6-31G. The results illustrate that the ring B3 structure is the most stable configuration compared with other rings. Odd and even linear structures have different bonding; there is one different bond in the center of even linear structures, while the remaining bonds have left and right symmetry. The B36 cluster upholds the configuration rule of pure ring and linear molecules. However, the N-doped B36N cluster exhibits obvious distortion compared with the B36 molecule. The impurity N changes the structure of the energy band of the B36 cluster. The wavelength of absorption spectra and electronic circular dichroism of the N-doped B36N cluster shifts to a longer wavelength compared with that of the B36 cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  2. Dodoo-Arhin D, Fabiane M, Bello A, Manyala N (2013) Ind Eng Chem Res 52:14160–14168

    Article  CAS  Google Scholar 

  3. Duan X, Wang C, Pan A, Yu R, Duan X (2015) Chem Soc Rev 44:8859–8876

    Article  CAS  Google Scholar 

  4. Chhowalla M, Liu Z, Zhang H (2015) Chem Soc Rev 44:2584–2586

    Article  CAS  Google Scholar 

  5. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Nat Nanotechnol 6:147–150

    Article  CAS  Google Scholar 

  6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  7. Butler SZ, Hollen SM, Cao LY, Cui Y, Gupta JA, Gutierrez HR, Heinz TF, Hong SS, Huang JX, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) ACS Nano 7:2898–2926

    Article  CAS  Google Scholar 

  8. Zhang H (2015) ACS Nano 9:9451–9469

    Article  CAS  Google Scholar 

  9. Brownson DAC, Banks CE (2014) The handbook of graphene electrochemistry. Springer, London

    Book  Google Scholar 

  10. Ciesielski A, Samori P (2014) Chem Soc rev 43:381–398

    Article  CAS  Google Scholar 

  11. Hung KH, Wang HW (2014) Thin Solid Films 550:515–520

    Article  CAS  Google Scholar 

  12. Yen M, Teng CC, Hsiao MC, Liu PI, Chuang WP, Ma CCM, Hsieh CK, Tsai MC, Tsai CH (2011) J Mater Chem 21:12880–12888

    Article  CAS  Google Scholar 

  13. Wang K, Li D, Li R, Feng L, Wang Y, Zhai H (2016) Phys Chem Chem Phys 18:13304–23311

    Article  Google Scholar 

  14. Li H, Jian T, Li W, Miao C, Wang Y, Chen Q, Luo X, Wang K, Zhai H, Li S, Wang L (2016) Phys Chem Chem Phys 18:29147–29155

    Article  CAS  Google Scholar 

  15. Mannix AJ, Zhou XF, Kiraly B, Wood JD, Alducin D, Myers BD, Liu X, Fisher BL, Santiago U, Guest JR, Yacaman MJ, Ponce A, Oganov AR, Hersam MC, Guisinger NP (2015) Science 350:1513–1516

    Article  CAS  Google Scholar 

  16. Piazza ZA, Hu HS, Li WL, Zhao YF, Li J, Wang LS (2014) Nat Commun 5:3113

    Article  Google Scholar 

  17. Wang XL, Zeng Z, Ahn HJ, Wang GX (2009) Appl Phys Lett 95:183103

    Article  Google Scholar 

  18. Dai JY, Yuan JM (2010) J Phys Condens Matt 22:225501

    Article  Google Scholar 

  19. Dai JY, Yuan JM, Giannozzi P (2009) Appl Phys Lett 95:232105

    Article  Google Scholar 

  20. Dai JY, Yuan JM (2010) Phys Rev B 81:165414

    Article  Google Scholar 

  21. Frisch MJ et al (2004) GAUSSIAN 03, revision D.01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  23. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  24. Carpenter JE, Weinhold F (1988) J Mol Struct (THEOCHEM) 169:41

    Article  Google Scholar 

  25. Weinhold F, Landis CR (2012) Intermolecular interactions. In: Discovering chemistry with natural bond orbitals. Wiley, Hoboken, NJ

  26. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  27. Reed AE, Weinhold F (1983) J Chem Phys 78:4066

    Article  CAS  Google Scholar 

  28. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmannn JA, Morales CM, Landis R, Weinhold F (2013) NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

  29. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  30. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  31. Weinhold F, Carpenter JE (1988) The natural bond orbital Lewis structure concept for molecules, radicals, and radical ions. In: Naaman R, Vager Z (eds) The structure of small molecules and ions. Plenum, New York, pp 227–236

  32. Helgaker T, Jørgensen P (1991) J Chem Phys 95:2595

    Article  CAS  Google Scholar 

  33. Bak KL, Jørgensen P, Helgaker T, Ruud K, Jensen HJA (1993) J Chem Phys 98:8873

    Article  CAS  Google Scholar 

  34. Bak KL, Hansen AE, Ruud K, Helgaker T, Olsen J, Jørgensen P (1995) Theor Chim Acta 90:441

    CAS  Google Scholar 

  35. Olsen J, Bak KL, Ruud K, Helgaker T, Jørgensen P (1995) Theor Chim Acta 90:421

    Article  CAS  Google Scholar 

  36. Autschbach J, Ziegler T, van Gisbergen SJA, Baerends EJ (2002) J Chem Phys 116:6930

    Article  CAS  Google Scholar 

  37. Hansen AE, Bak KL (1999) Enantiomer 4:455

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Basic Research Program of China (Grant No.2015CB352002), National Nature Science Foundation of China (Grant Nos. 11274062, 61475034, 61378045), the Fundamental Research Funds for the Central Universities (No.2242014R30006), the Natural Science Foundation of Jiangsu Province Youth Fund (Grant No. BK20140650), and “the Fundamental Research Funds for the Central Universities”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhong Xu.

Electronic supplementary material

ESM 1

Data from the higher level calculation MP2/6-31G(d,p) have been listed in Supporting Information S1. WBI values of the B7 cluster are listed in Supporting Information S2. The configuration of linear B2 to B15 molecules are shown in Supporting Information S3. (DOCX 1361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Dong, R., Lv, C. et al. Configurations and characteristics of boron and B36 clusters. J Mol Model 23, 198 (2017). https://doi.org/10.1007/s00894-017-3377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3377-x

Keywords

Navigation