Skip to main content
Log in

B30H8, B39H9 2−, B42H10, B48H10, and B72H12: polycyclic aromatic snub hydroboron clusters analogous to polycyclic aromatic hydrocarbons

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Calculations performed at the ab initio level using the recently reported planar concentric π-aromatic B18H6 2+(1) [Chen Q et al. (2011) Phys Chem Chem Phys 13:20620] as a building block suggest the possible existence of a new class of B3n H m polycyclic aromatic hydroboron (PAHB) clusters—B30H8(2), B39H9 2−(3), B42H10(4/5), B48H10(6), and B72H12(7)—which appear to be the inorganic analogs of the corresponding C n H m polycyclic aromatic hydrocarbon (PAHC) molecules naphthalene C10H8, phenalenyl anion C13H9 , phenanthrene/anthracene C14H10, pyrene C16H10, and coronene C24H12, respectively, in a universal atomic ratio of B:C = 3:1. Detailed canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP), and electron localization function (ELF) analyses indicate that, as they are hydrogenated fragments of a boron snub sheet [Zope RR, Baruah T (2010) Chem Phys Lett 501:193], these PAHB clusters are aromatic in nature, and exhibit the formation of islands of both σ- and π-aromaticity. The predicted ionization potentials of PAHB neutrals and electron detachment energies of small PAHB monoanions should permit them to be characterized experimentally in the future. The results obtained in this work expand the domain of planar boron-based clusters to a region well beyond B20, and experimental syntheses of these snub B3n H m clusters through partial hydrogenation of the corresponding bare B3n may open up a new area of boron chemistry parallel to that of PAHCs in carbon chemistry.

Ab initio calculations predict the existence of polycyclic aromatic hydroboron clusters as fragments of a boron snub sheet; these clusters are analogs of polycyclic aromatic hydrocarbons

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Cotton FA, Wilkinson G, Murrillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  2. Boustani I (2011) Chem Model 8:1

    Article  CAS  Google Scholar 

  3. Vincent MA, Schaefer HF (1981) J Am Chem Soc 103:5677

    Article  CAS  Google Scholar 

  4. Tian SX (2005) J Phys Chem A 109:5471

    Article  CAS  Google Scholar 

  5. Ricca A, Bauschlicher CW (1997) J Chem Phys 106:2317

    Article  CAS  Google Scholar 

  6. Curtiss LA, Pople JA (1989) J Chem Phys 91:4809

    Article  CAS  Google Scholar 

  7. Dias JF, Rasul G, Seidl PR, Surya Prakash GK, Olah GA (2003) J Phys Chem A 107:7981

    Article  CAS  Google Scholar 

  8. McKee ML, Wang ZX, Schleyer PvR (2000) J Am Chem Soc 122:4781

    Article  CAS  Google Scholar 

  9. Schleyer PvR, Subramanian G, Dransfeld A (1996) J Am Chem Soc 118:9988

    Article  CAS  Google Scholar 

  10. Goursot A, Pénigault E, Chermette H, Fripiat JG (1986) Can J Chem 64:1752

    Article  CAS  Google Scholar 

  11. Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2001) J Am Chem Soc 123:4313

    Article  CAS  Google Scholar 

  12. Pancharatna PD, Balakrishnarajan MM, Jemmis ED, Hoffmann R (2012) J Am Chem Soc 134:5916

    Article  CAS  Google Scholar 

  13. Olson JK, Boldyrev AI (2009) Inorg Chem 48:10060

    Article  CAS  Google Scholar 

  14. Olson JK, Boldyrev AI (2011) Comp Theor Chem 967:1

    Article  CAS  Google Scholar 

  15. Olson JK, Boldyrev AI (2012) Chem Phys Lett 523:83

    Article  CAS  Google Scholar 

  16. Olson JK, Boldyrev AI (2011) Chem Phys Lett 517:62

    Article  CAS  Google Scholar 

  17. Alexandrova AN, Boldyrev AI, Zhai H-J, Wang L-S (2006) Coord Chem Rev 250:2811

    Article  CAS  Google Scholar 

  18. Alexandrova AN, Koyle E, Boldyrev AI (2006) J Mol Model 12:569

    Article  CAS  Google Scholar 

  19. Boyukata M, Ozdogan C, Güvenc ZB (2007) J Mol Struct (THEOCHEM) 805:91

    Article  Google Scholar 

  20. Yu H-L, Sang RL, Wu YY (2009) J Phys Chem A 113:3382

    Article  CAS  Google Scholar 

  21. Szwacki NG, Weber V, Tymczak CJ, Nanoscale J (2009) Res Lett 4:1085

    Google Scholar 

  22. Bai H, Li S-D (2011) J Clust Sci 22:525

    Article  CAS  Google Scholar 

  23. Chen Q, Li S-D (2011) J Clust Sci 22:513

    Article  CAS  Google Scholar 

  24. Chen Q, Bai H, Guo J-C, Miao C-Q, Li S-D (2011) Phys Chem Chem Phys 13:20620

    Article  CAS  Google Scholar 

  25. Li D-Z, Lu H-G, Li S-D (2012) J Mol Model 18:3161. doi:10.1007/s00894-011-1322-y

  26. Li D-Z, Chen Q, Lu H-G, Li S-D (2012) Phys Chem Chem Phys (in press; article no. CP-ART-03-2012-040902.R1)

  27. Li W-L, Romanescu C, Jian T, Wang L-S (2012) J Am Chem Soc 134:13228

    Article  CAS  Google Scholar 

  28. Sergeeva AP, Zubarev DY, Zhai H-J, Boldyrev AI, Wang L-S (2008) J Am Chem Soc 130:7244

    Article  CAS  Google Scholar 

  29. Huang W, Sergeeva AP, Zhai H-J, Averkiev BB, Wang L-S, Boldyrev AI (2010) Nat Chem 2:202

    Article  Google Scholar 

  30. Sergeeva AP, Averkiev BB, Zhai H-J, Boldyrev AI, Wang L-S (2011) J Chem Phys 134:224304

    Article  Google Scholar 

  31. Piazza ZA, Li W-L, Romanescu C, Sergeeva AP, Wang L-S, Boldyrev AI (2012) J Chem Phys 136:104310

    Article  Google Scholar 

  32. Zhai H-J, Li S-D, Wang L-S (2007) J Phys Chem A 111:1030

    Article  CAS  Google Scholar 

  33. Zhai HJ, Li S-D, Wang L-S (2007) J Am Chem Soc 129:9254

    Article  CAS  Google Scholar 

  34. Li S-D, Zhai H-J, Wang L-S (2008) J Am Chem Soc 130:2573

    Article  CAS  Google Scholar 

  35. Tang H, Ismail-Beigi S (2007) Phys Rev Lett 99:115501

    Article  Google Scholar 

  36. Yang X, Ding Y, Ni J (2008) Phys Rev B 77:0414402

    Google Scholar 

  37. Galeev TR, Chen Q, Guo J-C, Bai H, Miao C-Q, Lu H-G, Sergeeva AP, Li S-D, Boldyrev AI (2011) Phys Chem Chem Phys 13:11575

    Article  CAS  Google Scholar 

  38. Zope RR, Baruah T (2010) Chem Phys Lett 501:193

    Article  Google Scholar 

  39. Novoselov KS, Geim AK, Morozov SV (2004) Science 306:666

    Article  CAS  Google Scholar 

  40. Zubarev DY, Boldyrev AI (2008) Phys Chem Chem Phys 10:5207

    Article  CAS  Google Scholar 

  41. Zubarev DY, Boldyrev AI (2008) J Org Chem 73:9251

    Article  CAS  Google Scholar 

  42. Zubarev DY, Boldyrev AI (2009) J Phys Chem A 113:866

    Article  CAS  Google Scholar 

  43. Galeev TR, Chen Q, Guo J-C, Bai H, Miao C-Q, Lu H-G, Sergeeva AP, Li S-D, Boldyrev AI (2011) Phys Chem Chem Phys 13:11575

    Article  CAS  Google Scholar 

  44. Silvi B, Savin A (1994) Nature 371:683

    Article  CAS  Google Scholar 

  45. Becke A, Edgecombe K (1990) J Chem Phys 92:5397

    Article  CAS  Google Scholar 

  46. Santos JC, Andres J, Aizman A, Fuentealba P (2005) J Chem Theor Comput 1:83

    Article  Google Scholar 

  47. Beck AD (1993) J Chem Phys 98:5648

    Article  Google Scholar 

  48. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  49. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503

    Article  CAS  Google Scholar 

  50. Saebø S, Almlöf J (1989) Chem Phys Lett 154:83

    Article  Google Scholar 

  51. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275

    Article  CAS  Google Scholar 

  52. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281

    Article  CAS  Google Scholar 

  53. Head-Gordon M, Head-Gordon T (1994) Chem Phys Lett 220:122

    Article  CAS  Google Scholar 

  54. Frisch J, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Gonzalezand C, Pople JA (2004) GAUSSIAN03 (revision A.01). Gaussian, Inc., Wallingford

  55. Wales DJ, Doye JPK (1979) J Phys Chem A 101:5111

    Article  Google Scholar 

  56. Tian F-Y, Wang Y-X (2008) J Chem Phys 129:024903

    Google Scholar 

  57. Popov IA, Bozhenko KV, Boldyrev AI (2012) Nano Res 5:117

  58. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Eikema HNJRv (1996) J Am Chem Soc 118:6317

    Google Scholar 

  59. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Org Lett 8:863

Download references

Acknowledgments

This work was jointly supported by the National Science Foundation of China (nos. 20873117 and 21003086)) and Shanxi Natural Science Foundation (no. 2010011012-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Dian Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 30626 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, H., Chen, Q., Zhao, YF. et al. B30H8, B39H9 2−, B42H10, B48H10, and B72H12: polycyclic aromatic snub hydroboron clusters analogous to polycyclic aromatic hydrocarbons. J Mol Model 19, 1195–1204 (2013). https://doi.org/10.1007/s00894-012-1640-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1640-8

Keywords

Navigation