Skip to main content
Log in

Planar π-aromatic C3h B6H +3 and π-antiaromatic C2h B8H2: boron hydride analogues of D3h C3H +3 and D2h C4H4

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Based upon extensive density functional theory and wave function theory calculations performed in this work, we predict the existence of the perfectly planar triangle C3h B6H +3 (1, 1A′) and the double-chain stripe C2h B8H2 (9, 1Ag) which are the ground states of the systems and the inorganic analogues of cyclopropene cation D3h C3H +3 and cyclobutadiene D2h C4H4, respectively. Detailed adaptive natural density partitioning (AdNDP) analyses indicate that C3h B6H +3 is π plus σ doubly aromatic with two delocalized π-electrons and six delocalized σ-electrons formally conforming to the 4n + 2 aromatic rule, while C2h B8H2 is π antiaromatic and σ aromatic with four delocalized π-electrons and ten delocalized σ-electrons. The perfectly planar C2h B8H4 (5, 1Ag) also proves to be π antiaromatic analogous to D2h C4H4, but it appears to be a local minimum about 50 kJ mol-1 less stable than the three dimensional Cs B8H4 (6, 1A′). AdNDP, nucleus independent chemical shifts (NICS) and electron localization function (ELF) analyses indicate that these boron hydride clusters form islands of both σ- and π-aromaticities and are overall aromatic in nature in ELF aromatic criteria.

Comprehensive ab inito investigations indicate that C3h B6H3 + and C2h B8H2 are the inorganic analogues of D3h C3H3 + and D2h C4H4, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cotton FA, Wilkinson G, Murrillo CA, Bochmann M (1999) Advanced Inorganic Chemistry, 6th edn. Wiley, New York

    Google Scholar 

  2. Vincent MA, Schaefer HF (1981) J Am Chem Soc 103:5677–5680

    Article  CAS  Google Scholar 

  3. Tian SX (2005) J Phys Chem A 109:5471–5480

    Article  CAS  Google Scholar 

  4. Ricca A, Bauschlicher CW (1997) J Chem Phys 106:2317–2322

    Article  CAS  Google Scholar 

  5. Curtiss LA, Pople JA (1989) J Chem Phys 91:4809–4812

    Article  CAS  Google Scholar 

  6. Dias JF, Rasul G, Seidl PR, Surya Prakash GK, Olah GA (2003) J Phys Chem A 107:7981–7984

    Article  CAS  Google Scholar 

  7. McKee ML, Wang ZX, Schleyer PvR (2000) J Am Chem Soc 122:4781–4793

    Article  CAS  Google Scholar 

  8. Schleyer PvR, Subramanian G, Dransfeld A (1996) J Am Chem Soc 118:9988–9989

    Article  CAS  Google Scholar 

  9. Goursot A, Pénigault E, Chermette H, Fripiat JG (1986) Can J Chem 64:1752–1757

    Article  CAS  Google Scholar 

  10. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS (2006) Coord Chem Rev 250:2811–2866

    Article  CAS  Google Scholar 

  11. Alexandrova AN, Koyle E, Boldyrev AI (2006) J Mol Model 12:569–576

    Article  CAS  Google Scholar 

  12. Boyukata M, Ozdogan C, Güvenç ZB (2007) J Mol Struct (THEOCHEM) 805:91–101

    Article  Google Scholar 

  13. Yu HL, Sang RL, Wu YY (2009) J Phys Chem A 113:3382–3386

    Article  CAS  Google Scholar 

  14. Szwacki NG, Weber V, Tymczak CJ (2009) J Nanoscale Res Lett 4:1085–1089

    Article  Google Scholar 

  15. Bai H, Li SD (2011) J Clust Sci 22:525–535

    Article  CAS  Google Scholar 

  16. Chen Q, Li SD (2011) J Clust Sci 22:513–523

    Article  CAS  Google Scholar 

  17. Chen Q, Bai H, Guo JC, Miao CQ, Li SD (2011) Phys Chem. Chem Phys. doi:10.1039/C1CP21927H

  18. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) J Phys ReV B 37:785–790

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GM, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, BurantJC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu A, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wang MW, Gonzales C, Pople JA (2003) Gaussian 03, Revision A.1. Gaussian Inc, Pittsburgh, PA

  21. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  22. Scuseria GE, Schaefer HF III (1989) J Chem Phys 90:3700–3703

    Article  CAS  Google Scholar 

  23. Scuseria GE, Janssen CL, Schaefer HF III (1988) J Chem Phys 89:7382–7388

    Article  CAS  Google Scholar 

  24. Cizek J (1969) Adv Chem Phys 14:35–89

    Article  CAS  Google Scholar 

  25. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS, Steiner E, Fowler PW (2003) J Phys Chem A 107:1359–1369

    Article  CAS  Google Scholar 

  26. Zhai HJ, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS (2003) Angew Chem Int Edn 42:6004–6008

    Article  CAS  Google Scholar 

  27. Alexandrova AN, Boldyrev AI, Fu YJ, Wang XB, Wang LS (2004) J Chem Phys 121:5709–5719

    Article  CAS  Google Scholar 

  28. Alexandrova AN, Boldyrev AI (2005) J Chem Theor Comput 1:566–560

    Article  CAS  Google Scholar 

  29. Zubarev DY, Boldyrev AI (2008) Phys Chem Chem Phys 10:5207–5217

    Article  CAS  Google Scholar 

  30. Zubarev DY, Boldyrev AI (2008) J Org Chem 73:9251–9258

    Article  CAS  Google Scholar 

  31. Zubarev DY, Boldyrev AI (2009) J Phys Chem A 113:866–868

    Article  CAS  Google Scholar 

  32. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  33. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Org Lett 8:863–866

    Article  CAS  Google Scholar 

  34. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  35. Silvi B, Savin A (1994) Nature 371:683–686

    Article  CAS  Google Scholar 

  36. Becke A, Edgecombe K (1990) J Chem Phys 92:5397–5430

    Article  CAS  Google Scholar 

  37. Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMoD Package, Universite Pierre et Marie Curie, France

  38. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4450

    Article  CAS  Google Scholar 

  39. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  40. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  41. Santos JC, Andres J, Aizman A, Fuentealba P (2005) J Chem Theor Comput 1:83–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Dian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, DZ., Lu, HG. & Li, SD. Planar π-aromatic C3h B6H +3 and π-antiaromatic C2h B8H2: boron hydride analogues of D3h C3H +3 and D2h C4H4 . J Mol Model 18, 3161–3167 (2012). https://doi.org/10.1007/s00894-011-1322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1322-y

Keywords

Navigation