Skip to main content
Log in

Planar D 2h B26H8, D 2h B26H8 2+, and C 2h B26H6: Building Blocks of Stable Boron Sheets with Twin-Hexagonal Holes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The most stable mono-layer boron sheets were predicted to have both the isolated hexagonal hole and the twin-hexagonal hole. Previous investigations indicate that planar B18H q n (n = 3–6, q = n − 4) are the building blocks of boron sheets with isolated hexagonal holes. Extensive DFT investigations performed in this work show that D 2h B26H8, D 2h B26H8 2+, and C 2 B26H6, may serve as the building blocks of boron sheets with twin-hexagonal holes. These bicyclic clusters possess planar or quasi-planar geometries at B3LYP/6-311+G(d,p) level, with 16, 14, and 14 delocalized π electrons, respectively. Detailed analyses indicate that they are overall aromatic in nature, with the formation of islands of both σ and π aromaticity. They are analogous to D 2h C16H14 and D 2h C16H14 2+ in π bonding patterns, respectively, but fundamentally different from the latter in σ-bonding. Remarkably, all of them appear to be energetically the lowest-lying isomers obtained, which are promising targets for future gas phase syntheses. These hydroboron clusters, together with B18H q n clusters, establish the molecular basis for modeling the short-range structures, nucleation, and growth processes of monolayer boron sheets. The results obtained in this work enrich the chemistry of boron hydride clusters and expand the analogy relationship between hydroborons and hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, and V. L. Solozhenko (2009). Nature 457, 863.

    Article  CAS  Google Scholar 

  2. I. Boustani, in Chemical Modelling: Applications and Theory, by Springborg M., (RSC Publishing, London, 2011), pp. 1-44.

  3. J. Kortus, K. D. Mazin II, V. P. Belashchenko, Antropov, and L. L. Boyer (2001). Phys. Rev. Lett. 86, 4656.

    Article  CAS  Google Scholar 

  4. D. Ciuparu, R. F. Klie, Y. M. Zhu, and L. Pfefferle (2004). J. Phys. Chem. B 108, 3967.

    Article  CAS  Google Scholar 

  5. F. Liu, C. Shen, Z. Su, X. Ding, S. Deng, J. Chen, N. Xu, and H. Gao (2010). J. Mater. Chem. 20, 2197.

    Article  CAS  Google Scholar 

  6. I. Boustani, A. Quandt, E. Hernandez, and A. Rubio (1999). J. Chem. Phys. 110, 3176.

    Article  CAS  Google Scholar 

  7. H. Tang and S. Ismail-Beigi (2007). Phys. Rev. Lett. 99, 115501.

    Article  Google Scholar 

  8. I. Boustani, A. Rubio, and J. A. Alonso (1999). Chem. Phys. Lett. 311, 21.

    Article  CAS  Google Scholar 

  9. E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson (2012). Nano Lett. 12, 2441.

    Article  CAS  Google Scholar 

  10. X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng (2012). ACS Nano 6, 7443.

    Article  CAS  Google Scholar 

  11. X. Yu, L. Li, X.-W. Xu, and C.-C. Tang (2012). J. Phys. Chem. C 116, 20075.

    Article  CAS  Google Scholar 

  12. H. G. Lu, Y. W. Mu, H. Bai, Q. Chen, and S. D. Li (2013). J. Chem. Phys. 138, 024701.

    Article  Google Scholar 

  13. A. N. Alexandrova, A. I. Boldyrev, H.-J. Zhai, and L.-S. Wang (2006). Coord. Chem. Rev. 250, 2811.

    Article  CAS  Google Scholar 

  14. H. J. Zhai, B. Kiran, J. Li, and L. S. Wang (2003). Nat. Mater. 2, 827.

    Article  CAS  Google Scholar 

  15. B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, and L. S. Wang (2005). Proc. Natl. Acad. Sci. USA 102, 961.

    Article  CAS  Google Scholar 

  16. A. P. Sergeeva, D. Y. Zubarev, H.-J. Zhai, A. I. Boldyrev, and L.-S. Wang (2008). J. Am. Chem. Soc. 130, 7244.

    Article  CAS  Google Scholar 

  17. W. Huang, A. P. Sergeeva, H.-J. Zhai, B. B. Averkiev, L.-S. Wang, and A. I. Boldyrev (2010). Nat. Chem. 2, 202.

    Article  Google Scholar 

  18. A. P. Sergeeva, B. B. Averkiev, H.-J. Zhai, A. I. Boldyrev, and L.-S. Wang (2011). J. Chem. Phys. 134, 224304.

    Article  Google Scholar 

  19. A. P. Sergeeva, Z. A. Piazza, C. Romanescu, W. L. Li, A. I. Boldyrev, and L. S. Wang (2012). J. Am. Chem. Soc. 134, 18065.

    Article  CAS  Google Scholar 

  20. D. Z. Li, Q. Chen, Y. B. Wu, H. G. Lu, and S. D. Li (2012). Phys. Chem. Chem. Phys. 14, 14769.

    Article  CAS  Google Scholar 

  21. H. L. Yu, R. L. Sang, and Y. Y. Wu (2009). J. Phys. Chem. A 113, 3382.

    Article  CAS  Google Scholar 

  22. N. G. Szwacki, V. Weber, and C. J. Tymczak (2009). Nanoscale Res. Lett. 4, 1085.

    Article  Google Scholar 

  23. H. Bai and S.-D. Li (2011). J. Clust. Sci. 22, 525.

    Article  CAS  Google Scholar 

  24. Q. Chen and S. D. Li (2011). J. Clust. Sci. 22, 513.

    Article  CAS  Google Scholar 

  25. W. L. Li, C. Romanescu, T. Jian, and L. S. Wang (2012). J. Am. Chem. Soc. 134, 13228.

    Article  CAS  Google Scholar 

  26. Q. Chen, H. Bai, J. C. Guo, C. Q. Miao, and S. D. Li (2011). Phys. Chem. Chem. Phys. 13, 20620.

    Article  CAS  Google Scholar 

  27. H. Bai, Q. Chen, Y. F. Zhao, Y. B. Wu, H. G. Lu, J. Li, and S. D. Li (2013). J. Mol. Model. 19, 1195.

    Article  CAS  Google Scholar 

  28. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  29. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  30. P. P. Bera, K. W. Sattelmeyer, M. Saunders, H. F. Schaefer, and P. V. Schleyer (2006). J. Phys. Chem. A 110, 4287.

    Article  CAS  Google Scholar 

  31. B. B. Averkiev, Geometry and electronic structure of doped dluster via the Coalescence Kick method. Ph.D. Dissertation (2009) Utah State University, Logan, Utah.

  32. D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207.

    Article  CAS  Google Scholar 

  33. D. Y. Zubarev and A. I. Boldyrev (2008). J. Org. Chem. 73, 9251.

    Article  CAS  Google Scholar 

  34. D. Y. Zubarev and A. I. Boldyrev (2009). J. Phys. Chem. A 113, 866.

    Article  CAS  Google Scholar 

  35. J. C. Santos, J. Andres, A. Aizman, and P. Fuentealba (2005). J. Chem. Theory Comput. 1, 83.

    Article  Google Scholar 

  36. P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. v. E. Hommes (1996). J. Am. Chem. Soc. 118, 6317.

    Article  CAS  Google Scholar 

  37. P. v. R. Schleyer, H. Jiao, N. J. R. v. E. Hommes, V. G. Malkin, and O. Malkina (1997). J. Am. Chem. Soc. 119, 12669.

    Article  CAS  Google Scholar 

  38. Z. F. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. v. R. Schleyer (2005). Chem. Rev. 105, 3842.

    Article  CAS  Google Scholar 

  39. K. Wolinski, J. F. Hinton, and P. Pulay (1990). J. Am. Chem. Soc. 112, 8251.

    Article  CAS  Google Scholar 

  40. M. J. Frisch, et al. in Gaussian 03 Revision A.01, Gaussian Inc. (2004) Wallingford.

Download references

Acknowledgments

This work was jointly supported financially by the NSFC (No. 20873117, 21003086, and 21273140) and SXNSF (No. 2010011012-3). The authors thank Dr. Qiang Chen for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Bo Wu or Si-Dian Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 437 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, WJ., Bai, H., Lu, HG. et al. Planar D 2h B26H8, D 2h B26H8 2+, and C 2h B26H6: Building Blocks of Stable Boron Sheets with Twin-Hexagonal Holes. J Clust Sci 24, 1127–1137 (2013). https://doi.org/10.1007/s10876-013-0603-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0603-2

Keywords

Navigation