Skip to main content

Advertisement

Log in

Improving water resistance and mechanical properties of waterborne acrylic resin modified by octafluoropentyl methacrylate

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new type of waterborne acrylic resin was prepared by the solution polymerization with octafluoroamyl methacrylate (OF-PMA), 2-butoxy ethanol, and acrylic monomers as raw materials and N, N-dimethyl ethanolamine as pH regulator. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed that the OF-PMA monomers were successfully grafted onto the resin. The effects of the addition mode and content of OF-PMA on the properties of waterborne acrylic resin were studied. The properties of waterborne acrylic polymer and its coating were tested by a thermogravimetric analyzer, an optical contact angle measuring instrument, and a tensile testing machine. The results showed that after the introduction of OF-PMA monomer into acrylic resin, the tensile strength of the resin was increased by 14.31 MPa. Moreover, the water resistance and heat resistance of resin coating were also improved obviously and the as-modified resin coating exhibited better fullness, adhesion of Gt0, and the hardness of 4H. The novel acrylic resin exhibits a potential application prospect in the fields of waterborne wood coatings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Zhu Q, Huang Y, Li Y et al (2021) Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. Adv Compos Hybrid Mater 4:780–792. https://doi.org/10.1007/s42114-021-00265-6

    Article  CAS  Google Scholar 

  2. Qiao G, Wang S, Wang X, Chen X, Wang X, Cui H (2022) Ni/Co/black phosphorus nanocomposites for Q235 carbon steel corrosion-resistant coating. Adv Compos Hybrid Mater 5:438–449. https://doi.org/10.1007/s42114-021-00268-3

    Article  CAS  Google Scholar 

  3. Ashok RB, Srinivasa CV, Basavaraju B (2020) Study on morphology and mechanical behavior of areca leaf sheath reinforced epoxy composites. Adv Compos Hybrid Mater 3:365–374. https://doi.org/10.1007/s42114-020-00169-x

    Article  CAS  Google Scholar 

  4. Song H, Zhang Q, Zhang Y et al (2021) Waterborne polyurethane/3-amino-polyhedral oligomeric silsesquioxane (NH2-POSS) nanocomposites with enhanced properties. Adv Compos Hybrid Mater 4:629–638. https://doi.org/10.1007/s42114-021-00285-2

    Article  CAS  Google Scholar 

  5. Yu Z, Yan Z, Zhang F et al (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875. https://doi.org/10.1016/j.porgcoat.2022.106875

    Article  CAS  Google Scholar 

  6. Cai J, Murugadoss V, Jiang J et al (2022) Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv Compos Hybrid Mater 5:641–650. https://doi.org/10.1007/s42114-022-00473-8

    Article  CAS  Google Scholar 

  7. Gao Q, Pan Y, Zheng G, Liu C, Shen C, Liu X (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4:274–285. https://doi.org/10.1007/s42114-021-00221-4

    Article  CAS  Google Scholar 

  8. Llevot A, Meier M (2018) Perspective: green polyurethane synthesis for coating applications. Polym Int 68:826–831. https://doi.org/10.1002/pi.5655

    Article  CAS  Google Scholar 

  9. Bustero I, Gaztelumendi I, Obieta I et al (2020) Free-standing graphene films embedded in epoxy resin with enhanced thermal properties. Adv Compos Hybrid Mater 3:31–40. https://doi.org/10.1007/s42114-020-00136-6

    Article  CAS  Google Scholar 

  10. Liu C, Yin Q, Li X et al (2021) A waterborne polyurethane–based leather finishing agent with excellent room temperature self-healing properties and wear-resistance. Adv Compos Hybrid Mater 4:138–149. https://doi.org/10.1007/s42114-021-00206-3

    Article  CAS  Google Scholar 

  11. Shao W, Liu D, Cao T et al (2021) Study on favorable comprehensive properties of superhydrophobic coating fabricated by polytetrafluoroethylene doped with graphene. Adv Compos Hybrid Mater 4:521–533. https://doi.org/10.1007/s42114-021-00243-y

    Article  CAS  Google Scholar 

  12. Duan Y, Huo Y, Duan L (2017) Preparation of acrylic resins modified with epoxy resins and their behaviors as binders of waterborne printing ink on plastic film. Colloids Surf A Physicochem Eng Aspects 535:225–231. https://doi.org/10.1016/j.colsurfa.2017.09.041

    Article  CAS  Google Scholar 

  13. Jiao C, Sun L, Shao Q et al (2021) Advances in waterborne acrylic resins: synthesis principle, modification strategies, and their applications. ACS Omega 6:2443–2449. https://doi.org/10.1021/acsomega.0c05593

    Article  CAS  Google Scholar 

  14. Yang K, Chen X, Zhang Z, Yu X, Naito K, Zhang Q (2019) Introducing rigid pyrimidine ring to improve the mechanical properties and thermal-oxidative stabilities of phthalonitrile resin. Polym Advan Technol 31:328–337. https://doi.org/10.1002/pat.4773

    Article  CAS  Google Scholar 

  15. Bai S, Zheng W, Yang G et al (2017) Synthesis of core-shell fluorinated acrylate copolymers and its application as finishing agent for textile. Fibers Polym 18:1848–1857. https://doi.org/10.1007/s12221-017-7228-2

    Article  CAS  Google Scholar 

  16. Lei H, He D, Guo Y, Tang Y, Huang H (2018) Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer. Appl Surf Sci 442:71–77. https://doi.org/10.1016/j.apsusc.2018.02.134

    Article  CAS  Google Scholar 

  17. Çakmakçi E (2018) HDI trimer based fluorine containing urethane methacrylates for hydrophobic photocured coatings. Polym-Plast Tech Mat 58:854–865. https://doi.org/10.1080/03602559.2018.1520260

    Article  CAS  Google Scholar 

  18. Jiao C, Shao Q, Wu M et al (2020) 2-(3,4-Epoxy) ethyltriethoxysilane-modified waterborne acrylic resin: preparation and property analysis. Polymer 190:122196. https://doi.org/10.1016/j.polymer.2020.122196

    Article  CAS  Google Scholar 

  19. Liu Z, Fan X, Zhang J et al (2021) Improving the comprehensive properties of PBO fibres/cyanate ester composites using a hyperbranched fluorine and epoxy containing PBO precursor. Compos Part A Appl S 150:106596. https://doi.org/10.1016/j.compositesa.2021.106596

    Article  CAS  Google Scholar 

  20. Tan X, Wang Y, Huang Z et al (2021) Facile fabrication of a mechanical, chemical, thermal, and long-term outdoor durable fluorine-free superhydrophobic coating. Adv Mater Interfaces 8:2002209. https://doi.org/10.1002/admi.202002209

    Article  CAS  Google Scholar 

  21. Hao G, Zhu L, Yang W, Chen Y (2015) Investigation on the film surface and bulk properties of fluorine and silicon contained polyacrylate. Prog Org Coat 85:8–14. https://doi.org/10.1016/j.porgcoat.2015.02.021

    Article  CAS  Google Scholar 

  22. Fang C, Zhu K, Zhu X, Lin Z (2019) Preparation and characterization of self-crosslinking fluorinated polyacrylate latexes and their pressure sensitive adhesive applications. Int J Adhes Adhes 95:102417. https://doi.org/10.1016/j.ijadhadh.2019.102417

    Article  CAS  Google Scholar 

  23. Wang Y, Qiu F, Xu B et al (2013) Preparation, mechanical properties and surface morphologies of waterborne fluorinated polyurethane-acrylate. Prog Org Coat 76:876–883. https://doi.org/10.1016/j.porgcoat.2013.02.003

    Article  CAS  Google Scholar 

  24. Lee SW, Lee YH, Park H, Kim HD (2013) Effect of total acrylic/fluorinated acrylic monomer contents on the properties of waterborne polyurethane/acrylic hybrid emulsions. Macromol Res 21:709–718. https://doi.org/10.1007/s13233-013-1122-6

    Article  CAS  Google Scholar 

  25. Wang Y, Long J, Bai Y et al (2015) Preparation and characterization of fluorinated acrylic pressure sensitive adhesives for low surface energy substrates. J Fluorine Chem 180:103–109. https://doi.org/10.1016/j.jfluchem.2015.09.007

    Article  CAS  Google Scholar 

  26. Lü T, Qi D, Zhang D, Liu Q, Zhao H (2016) Fabrication of self-cross-linking fluorinated polyacrylate latex particles with core-shell structure and film properties. React Funct Polym 104:9–14. https://doi.org/10.1016/j.reactfunctpolym.2016.04.020

    Article  CAS  Google Scholar 

  27. Yin X, Sun C, Zhang B et al (2017) A facile approach to fabricate superhydrophobic coatings on porous surfaces using cross-linkable fluorinated emulsions. Chem Eng J 330:202–212. https://doi.org/10.1016/j.cej.2017.06.145

    Article  CAS  Google Scholar 

  28. Cheng W, Wang Y, Ge S, Ding X, Cui Z, Shao Q (2021) One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties. Adv Compos Hybrid Mater 4:150–161. https://doi.org/10.1007/s42114-020-00199-5

    Article  CAS  Google Scholar 

  29. Zheng J, Sun L, Jiao C et al (2021) Hydrothermally synthesized Ti/Zr bimetallic MOFs derived N self-doped TiO2/ZrO2 composite catalysts with enhanced photocatalytic degradation of methylene blue. Colloid Surf A 623:126629. https://doi.org/10.1016/j.colsurfa.2021.126629

    Article  CAS  Google Scholar 

  30. Zheng B, Ge S, Wang S et al (2020) Effect of γ-aminopropyltriethoxysilane on the properties of cellulose acetate butyrate modified acrylic waterborne coatings. React Funct Polym 154:104657. https://doi.org/10.1016/j.reactfunctpolym.2020.104657

    Article  CAS  Google Scholar 

  31. Li H, Zhou J, Zhao J, Li Y, Lu K (2020) Synthesis of cellulose nanocrystals-armored fluorinated polyacrylate latexes via pickering emulsion polymerization and their film properties. Colloids Surf B Biointerfaces 192:111071. https://doi.org/10.1016/j.colsurfb.2020.111071

    Article  CAS  Google Scholar 

  32. Liu J, Huang J, Wujcik EK et al (2015) Hydrophobic electrospun polyimide nanofibers for self-cleaning materials. Macromol Mater Eng 300:358–368. https://doi.org/10.1002/mame.201400307

    Article  CAS  Google Scholar 

  33. Wu M, Ge S, Jiao C et al (2020) Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes. Polymer 200:122547. https://doi.org/10.1016/j.polymer.2020.122547

    Article  CAS  Google Scholar 

  34. Li J, Zhang H, Liu F, Lai J, Qi H, You X (2013) A new series of fluorinated alicyclic-functionalized polyimides derivated from natural-(D)-camphor: synthesis, structure–properties relationships and dynamic dielectric analyses. Polymer 54:5673–5683. https://doi.org/10.1016/j.polymer.2013.08.014

    Article  CAS  Google Scholar 

  35. Yu F, Gao J, Liu C et al (2020) Preparation and UV aging of nano-SiO2/fluorinated polyacrylate polyurethane hydrophobic composite coating. Prog Org Coat 141:105556. https://doi.org/10.1016/j.porgcoat.2020.105556

    Article  CAS  Google Scholar 

  36. He S, Liu W, Yang M, Liu C, Jiang C, Wang Z (2018) Fluorinated polyacrylates containing amino side chains for the surface modification of waterborne epoxy resin. J Appl Polym Sci 136:47091. https://doi.org/10.1002/app.47091

    Article  CAS  Google Scholar 

  37. Guo X, Ge S, Wang J et al (2018) Waterborne acrylic resin modified with Glycidyl Methacrylate (GMA):formula optimization and property analysis. Polymer 143:155–163. https://doi.org/10.1016/j.polymer.2018.04.020

    Article  CAS  Google Scholar 

  38. Lei H, He D, Guo Y, Tang Y, Lu Y (2018) Modification of a fluorine-silicone acrylic resin with a free-radical-catching agent. J Appl Polym Sci 135:46385. https://doi.org/10.1002/app.46385

    Article  CAS  Google Scholar 

  39. Drake I, Cardoen G, Hughes A et al (2019) Polyurea-acrylic hybrid emulsions: characterization and film properties. Polymer 181:121761. https://doi.org/10.1016/j.polymer.2019.121761

    Article  CAS  Google Scholar 

  40. Pang AL, Ismail H, Bakar AA (2016) Tensile properties, water resistance, and thermal properties of linear low-density polyethylene/polyvinyl alcohol/kenaf composites: effect of 3-(trimethoxysilyl) propyl Methacrylate (TMS) as a silane coupling agent. BioResources 11:5889

    Article  CAS  Google Scholar 

  41. Öttinger MLHC, Suter UW (1991) Bond-length and bond-angle distributions in coarse-grained polymer chains. J Chem Phys 95:2178–2182. https://doi.org/10.1063/1.460965

    Article  Google Scholar 

  42. Flory PJ, Hoeve CAJ, Ciferri A (1959) Influence of bond angle restrictions on polymer elasticity. J Polym Sci 34:337–347

    Article  CAS  Google Scholar 

  43. Madhusudhana AM, Mohana KNS, Hegde MB, Nayak SR, Rajitha K, Swamy NK (2020) Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: an efficient anticorrosion coating on mild steel in saline medium. Adv Compos Hybrid Mater 3:141–155. https://doi.org/10.1007/s42114-020-00142-8

    Article  CAS  Google Scholar 

  44. Fan X, Liu Z, Huang J et al (2022) Synthesis, curing mechanism, thermal stability, and surface properties of fluorinated polybenzoxazines for coating applications. Adv Compos Hybrid Mater 5:322–334. https://doi.org/10.1007/s42114-021-00381-3

    Article  CAS  Google Scholar 

  45. Naik V, Kumar M, Vijayan V, Kaup a, (2022) A review on natural fiber composite material in automotive applications. Eng Sci 18:1–10. https://doi.org/10.30919/es8d589

    Article  Google Scholar 

  46. Dai B, Ma Y, Dong F et al (2022) Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv Compos Hybrid Mater 5:704–754. https://doi.org/10.1007/s42114-022-00510-6

    Article  Google Scholar 

  47. Yao F, Xie W, Ma C et al (2022) Superb electromagnetic shielding polymer nanocomposites filled with 3-dimensional p-phenylenediamine/aniline copolymer nanofibers@copper foam hybrid nanofillers. Compos Part B Eng 245:110236. https://doi.org/10.1016/j.compositesb.2022.110236

    Article  CAS  Google Scholar 

  48. Cao Y, Weng M, Mahmoud MHH et al (2022) Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5:1253–1267. https://doi.org/10.1007/s42114-022-00504-4

    Article  CAS  Google Scholar 

  49. Wang P, Song T, Abo-Dief HM et al (2022) Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylene–vinyl acetate copolymer nanocomposites. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00489-0

    Article  Google Scholar 

  50. Jing X, Li Y, Zhu J et al (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-42022-00438-x.10.1007/s42114-022-00438-x

    Article  Google Scholar 

  51. Kong D, El-Bahy ZM, Algadi H et al (2022) Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00531-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2019BEE075), Scientific Research Foundation of SDUST for Recruited Talents (No. 2019RCJJ007), and Elite Program of SDUST (No. skr21-3-051). The authors acknowledge the financial support of Taif University Researchers Supporting Project number (TURSP-2020/14), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Shao, Junxiang Wang or Zhanhu Guo.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, J., Yan, Z., Hao, L. et al. Improving water resistance and mechanical properties of waterborne acrylic resin modified by octafluoropentyl methacrylate. J Mater Sci 58, 1452–1464 (2023). https://doi.org/10.1007/s10853-022-07956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07956-5

Navigation