Skip to main content
Log in

Developments in pressure-sensitive adhesives: a review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

An adhesive is a non-metallic substance used for the joining of two separate objects by applying it either on one side or both the sides of objects. One of the classifications of adhesives is based on the chemical nature, i.e. it can either be reactive or non-reactive, while the other segregates them depending upon the origin like natural or synthetic. The pressure-sensitive adhesives (PSAs) are one of the important classes following the mechanism of curing of the adhesive which do not undergo any chemical reaction or physical change during the adhesion process. PSAs are greatly replacing many conventional types of adhesive and are considered safe to use. The application of the hybrid polymers in the field of PSAs that consists of silane-curing organic compounds having wide formulation tolerance and outstanding mechanical properties is a major class in the upcoming PSA market. The present article discusses the various types of PSAs, their recent trends based on the various application properties with the structure–property relationship and their synthesis techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

MDI:

4,4-Diphenyl methane diisocyanate

AIACA:

Aluminum (III) acetylacetonate

AIBN:

Azobisisobutyronitrile

APTES:

Aminopropyltriethoxysilane

BD:

Butanediol

BPA:

Bisphenol A

Br:

Bromine

C:

Carbon

DA:

Dimer acid

DADGE:

Dimer acid diglycidyl ester

DBTDL:

Dibutyl tin dilaurate

DDM:

Diaminiodiphenylmethane

DETA:

Diethylenetriamine

DGEBPA:

Diglycidyl ether of bisphenol A

DGGA:

N,N-Diglycidyl 1,4-glycidyloxyaniline

DMPA:

Dimetlylolpropionic acid

DPMA:

Dipentene maleic anhydride

DSC:

Differential scanning calorimeter

EB:

Electron beam

ECH:

Epichlorohydrin

EDA:

Ethylene diamine

EDA:

Ethylene diamine

ESO:

Epoxidized soybean oil

F:

Fluorine

HEMA:

Hydroxyethylmethacrylate

HFP:

Hexafluoropropylene

HHPA:

Hexahydrophthalic anhydride

HMA:

Hot melt adhesives

HTPB:

Hydroxylated polybutadiene

HTPB:

Hydroxylated polybutadiene

IPDA:

Isophorone diamine

IPDI:

Isophorone diisocyanate

MHHPA:

Methylhexahydrophthalic anhydride

MMA:

Methyl methacrylate

NMP:

n-Methylpyrrolidone

NPGGE:

Neopentyl glycol diglycidyl ether

P:

Phosphorus

PDMS:

Polydimethylsiloxane

PE:

Polyethylene

PET:

Polyethylene terephthalate

PMMA:

Poly (methyl methacrylate)

PPG:

Polypropylene glycol

PSA:

Pressure-sensitive adhesives

PTFE:

Polytetrafluoroethylene

PU:

Polyurethane

PUA:

Polyurethane acrylate

PVDF:

Polyvinylidenefluoride

SA:

Sebacic acid

TEA:

Triethyl amine

TEA:

Triethyl amine

TEPIC:

Tris(2-3-epoxypropyl) isocyanurate

Tg:

Glass transition temperature

TMPGE:

Trimethylolpropane triglycidyl ether

TMPTA:

Trimethylolpropane triacrylate

TPU:

Thermoplastic polyurethane

UF:

Urea formaldehyde

UV:

Ultraviolet

VDF:

Vinylidenefluoride

VOC:

Volatile organic compounds

wt:

Weight

References

  1. Gollins K, Elvin N, Delale F (2020) Characterization of adhesive joints under high-speed normal impact: part II. Numerical studies. Int J Adhes Adhes. https://doi.org/10.1016/j.ijadhadh.2019.102530

    Article  Google Scholar 

  2. Ebnesajjad S (2011) Introduction and adhesion theories. Handb Adhes Surf Prep. https://doi.org/10.1016/B978-1-4377-4461-3.10001-X

    Article  Google Scholar 

  3. Santos P, Correia JR, Godinho L (2019) Bonding quality assessment of cross-layered Maritime pine elements glued with one-component polyurethane adhesive. Constr Build Mater 211:571–582. https://doi.org/10.1016/j.conbuildmat.2019.03.064

    Article  CAS  Google Scholar 

  4. Abdallah M, Kamar EM, Eid S, El-Etre AY (2016) Animal glue as green inhibitor for corrosion of aluminum and aluminum-silicon alloys in sodium hydroxide solutions. J Mol Liq 220:755–761. https://doi.org/10.1016/j.molliq.2016.04.062

    Article  CAS  Google Scholar 

  5. Huang Y, Meng X, Xie Y (2019) New technique of friction-based filling stacking joining for metal and polymer. Compos Part B Eng 163:217–223. https://doi.org/10.1016/j.compositesb.2018.11.050

    Article  CAS  Google Scholar 

  6. Benatar A (2016) Plastics joining, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  7. Wang X, Shi J, Wang H (2019) Preparation, properties, and structural evolution of a novel polyborosilazane adhesive, temperature-resistant to 1600 C for joining SiC ceramics. J Alloys Compd 772:912–919. https://doi.org/10.1016/j.jallcom.2018.09.110

    Article  CAS  Google Scholar 

  8. Barbosa AQ, da Silva LFM, Abenojar J (2017) Toughness of a brittle epoxy resin reinforced with micro cork particles: effect of size, amount and surface treatment. Compos Part B Eng 114:299–310. https://doi.org/10.1016/j.compositesb.2016.10.072

    Article  CAS  Google Scholar 

  9. Banea MD, Rosioara M, Carbas RJC, da Silva LFM (2018) Multi-material adhesive joints for automotive industry. Compos Part B Eng 151:71–77. https://doi.org/10.1016/j.compositesb.2018.06.009

    Article  CAS  Google Scholar 

  10. Sreeja R, Prabhakaran PV, Manwatkar SK, Packirisamy S (2012) Adhesive joining of metal to metal and metal to ceramic by ceramic precursor route. Mater Sci Forum 710:656–661. https://doi.org/10.4028/www.scientific.net/MSF.710.656

    Article  CAS  Google Scholar 

  11. Niaounakis M (2015) Adhesive compositions. Biopolym Process Prod. https://doi.org/10.1016/B978-0-323-26698-7.00015-5

    Article  Google Scholar 

  12. Viljanmaa M (2002) Lactic acid based polymers as hot melt adhesives for packaging applications. Int J Adhes Adhes 22:219–226

    Article  CAS  Google Scholar 

  13. Mirschel G, Daikos O, Scherzer T (2019) In-line monitoring of the thickness distribution of adhesive layers in black textile laminates by hyperspectral imaging. Comput Chem Eng 124:317–325. https://doi.org/10.1016/j.compchemeng.2019.01.015

    Article  CAS  Google Scholar 

  14. Blyberg L, Lang M, Lundstedt K (2014) Glass, timber and adhesive joints—innovative load bearing building components. Constr Build Mater 55:470–478. https://doi.org/10.1016/j.conbuildmat.2014.01.045

    Article  Google Scholar 

  15. Flores N, Garcia R, Hajirasouliha I (2018) Composites with recycled rubber aggregates: properties and opportunities in construction. Constr Build Mater 188:884–897. https://doi.org/10.1016/j.conbuildmat.2018.08.069

    Article  CAS  Google Scholar 

  16. Tous L, Ruseckaite RA, Ciannamea EM (2019) Sustainable hot-melt adhesives based on soybean protein isolate and polycaprolactone. Ind Crops Prod 135:153–158. https://doi.org/10.1016/jindcrop.2019.04.043

    Article  CAS  Google Scholar 

  17. Pengelly I, Groves J, Northage C (1998) An investigation into the composition of products evolved during heating of hot melt adhesives. Ann Occup Hyg 42:37–44. https://doi.org/10.1016/S0003-4878(97)00045-8

    Article  CAS  PubMed  Google Scholar 

  18. Alejandra M, París R, Martín-martínez JM (2019) Viscoelastic and adhesion properties of hot-melts made with blends of ethylene-co-n-butyl acrylate (EBA) and ethylene-co-vinyl acetate (EVA) copolymers. Int J Adhes Adhes 88:34–42. https://doi.org/10.1016/j.ijadhadh.2018.11.001

    Article  CAS  Google Scholar 

  19. Chen X, Zhong H, Jia L (2002) Polyamides derived from piperazine and used for hot-melt adhesives: synthesis and properties. Int J Adhes Adhes 22:75–79. https://doi.org/10.1016/S0143-7496(01)00039-2

    Article  Google Scholar 

  20. Orgilés-Calpena E, Arán-Aís F, Torró-Palau AM, Orgilés-Barceló C (2016) Novel polyurethane reactive hot melt adhesives based on polycarbonate polyols derived from CO2 for the footwear industry. Int J Adhes Adhes 70:218–224. https://doi.org/10.1016/j.ijadhadh2016.07.009

    Article  Google Scholar 

  21. Liang B, Kuang S, Huang J (2019) Synthesis and characterization of novel renewable tung oil-based UV-curable active monomers and bio-based copolymer. Prog Org Coat 129:116–124. https://doi.org/10.1016/j.porgcoat.2019.01.007

    Article  CAS  Google Scholar 

  22. Hubmann M, Kong X, Curtis JM (2019) Kinetic stabilization of cellulose nanocrystals in a photocurable prepolymer for application as an adhesion promoter in UV-curable coatings. Prog Org Coat 129:101–115. https://doi.org/10.1016/j.porgcoat.2018.12.019

    Article  CAS  Google Scholar 

  23. Huang J, Sun J, Zhang R (2016) Improvement of biodegradability of UV-curable adhesives modified by a novel polyurethane acrylate. Prog Org Coat 95:20–25. https://doi.org/10.1016/j.porgcoat.2016.02.017

    Article  CAS  Google Scholar 

  24. Park YJ, Lim DH, Kim HJ (2009) UV- and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. Int J Adhes Adhes 29:710–717. https://doi.org/10.1016/j.ijadhadh.2009.02.001

    Article  CAS  Google Scholar 

  25. Hong X, Wen J, Xiong X, Hu Y (2016) Silver nanowire-carbon fiber cloth nanocomposites synthesized by UV curing adhesive for electrochemical point-of-use water disinfection. Chemosphere 154:537–545. https://doi.org/10.1016/j.chemosphere.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  26. Heckmann T, Souvignet T, Naccache D (2017) Electrically conductive adhesives, thermally conductive adhesives and UV adhesives in data extraction forensics. Digit Investig. https://doi.org/10.1016/j.diin.2017.02.009

    Article  Google Scholar 

  27. Kowalczyk A, Kowalczyk K, Weisbrodt M (2018) Influence of a phosphorus-based methacrylate monomer on features of thermally curable self-adhesive structural tapes. Int J Adhes Adhes 85:286–292. https://doi.org/10.1016/j.ijadhadh.2018.07.002

    Article  CAS  Google Scholar 

  28. Park Y, Kim H, Park D, Sung I (2010) Reliability of liquid crystal cell and immiscibility between dual-curable adhesives and liquid crystal. Eur Polym J 46:1642–1648. https://doi.org/10.1016/j.eurpolymj.2009.05.034

    Article  CAS  Google Scholar 

  29. Chung S-W, Kim H-T (2012) Interfacial reliability between hot-melt polyamides resin and textile for wearable electronics application. Microelectron Reliab 52(7):1501–1510. https://doi.org/10.1016/j.microrel.2012.02.014

    Article  CAS  Google Scholar 

  30. Lee SW, Park JW, Kwon YE (2012) Optical properties and UV-curing behaviors of optically clear semi-interpenetrated structured acrylic pressure sensitive adhesives. Int J Adhes Adhes 38:5–10. https://doi.org/10.1016/j.ijadhadh.2012.04.002

    Article  CAS  Google Scholar 

  31. Kumar Singh A, Singh Mehra D, Kumar Niyogi U (2012) Effect of tackifier and crosslinkers on electron beam curable polyurethane pressure sensitive adhesive. Radiat Phys Chem 81:547–552. https://doi.org/10.1016/j.radphyschem.2012.01.017

    Article  CAS  Google Scholar 

  32. Singh AK, Mehra DS, Niyogi UK (2013) Effect of crosslinkers on adhesion properties of electron beam curable polyurethane pressure sensitive adhesive. Int J Adhes Adhes 41:73–79. https://doi.org/10.1016/j.ijadhadh.2012.10.004

    Article  CAS  Google Scholar 

  33. Zech ZC, Ilker RM (2005) Development trends in pressure-sensitive adhesive systems. Mater Sci Pol 23(4):605–623

    Google Scholar 

  34. Lin SB, Durfee LD, Ekeland RA, Schalau GK (2012) Recent advances in silicone pressure-sensitive adhesives. J Adhes Sci Technol. https://doi.org/10.1163/156856107781192274

    Article  Google Scholar 

  35. Dastjerdi Z, Cranston ED, Dubé MA (2018) Pressure sensitive adhesive property modification using cellulose nanocrystals. Int J Adhes Adhes 81:36–42. https://doi.org/10.1016/j.ijadhadh.2017.11.009

    Article  CAS  Google Scholar 

  36. Kim JK, Kim JW, Kim MI, Song MS (2006) Thermal conductivity and adhesion properties of thermally conductive pressure-sensitive adhesives. Macromol Res 14:517–523. https://doi.org/10.1007/BF03218718

    Article  CAS  Google Scholar 

  37. Paul CW, Silverberg E (2011) Handbook of adhesion technology

  38. Cho J (2014) Compression behavior of a pressure-sensitive adhesive material. Macromol Res 22:1238–1241. https://doi.org/10.1007/s13233-014-2164-0

    Article  CAS  Google Scholar 

  39. Jin K, López Barreiro D, Martin-Martinez FJ (2018) Improving the performance of pressure sensitive adhesives by tuning the crosslinking density and locations. Polymer (Guildf) 154:164–171. https://doi.org/10.1016/j.polymer.2018.08.065

    Article  CAS  Google Scholar 

  40. Chang EP (1997) Viscoelastic properties of pressure-sensitive adhesives. J Adhes 60:233–248. https://doi.org/10.1080/00218469708014421

    Article  CAS  Google Scholar 

  41. Yu Q, Yang W, Wang Q (2019) Functionalization of cellulose nanocrystals with γ-MPS and its effect on the adhesive behavior of acrylic pressure sensitive adhesives. Carbohydr Polym 217:168–177. https://doi.org/10.1016/j.carbpol.2019.04.049

    Article  CAS  PubMed  Google Scholar 

  42. Ho KY, Dodou K (2007) Rheological studies on pressure-sensitive silicone adhesives and drug-in-adhesive layers as a means to characterise adhesive performance. Int J Pharm 333:24–33. https://doi.org/10.1016/j.ijpharm.2006.09.043

    Article  CAS  PubMed  Google Scholar 

  43. Czech Z, Pełech R (2010) Thermal decomposition of polyurethane pressure-sensitive adhesives dispersions. Prog Org Coat 67:72–75. https://doi.org/10.1016/j.porgcoat.2009.09.019

    Article  CAS  Google Scholar 

  44. Pan L, Ding W, Ma W (2018) Galvanic corrosion protection and durability of polyaniline-reinforced epoxy adhesive for bond-riveted joints in AA5083/Cf/Epoxy laminates. Mater Des 160:1106–1116. https://doi.org/10.1016/j.matdes.2018.10.034

    Article  CAS  Google Scholar 

  45. Sun S, Li M, Liu A (2013) A review on mechanical properties of pressure sensitive adhesives. Int J Adhes Adhes 41:98–106. https://doi.org/10.1016/j.ijadhadh.2012.10.011

    Article  CAS  Google Scholar 

  46. Mehravar E, Gross MA, Agirre A (2018) Importance of film morphology on the performance of thermo-responsive waterborne pressure sensitive adhesives. Eur Polym J 98:63–71. https://doi.org/10.1016/j.eurpolymj.2017.11.004

    Article  CAS  Google Scholar 

  47. Shibakami M, Sohma M (2018) Thermal, crystalline, and pressure-sensitive adhesive properties of paramylon monoesters derived from an euglenoid polysaccharide. Carbohydr Polym 200:239–247. https://doi.org/10.1016/j.carbpol.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  48. Baek S, Hwang S (2017) Preparation of biomass-based transparent pressure sensitive adhesives for optically clear adhesive and their adhesion performance. Eur Polym J 92:97–104. https://doi.org/10.1016/j.eurpolymj.2017.04.039

    Article  CAS  Google Scholar 

  49. Asua M, Daniloska V, Carretero P, Tomovska R (2014) High performance pressure sensitive adhesives by miniemulsion photopolymerization in a continuous tubular reactor. Polymer 55:5050–5056. https://doi.org/10.1016/j.polymer.2014.08.038

    Article  CAS  Google Scholar 

  50. Mohammed IK, Charalambides MN, Kinloch AJ (2016) Modeling the effect of rate and geometry on peeling and tack of pressure-sensitive adhesives. J Non-Newton Fluid Mech 233:85–94. https://doi.org/10.1016/j.jnnfm.2016.01.016

    Article  CAS  Google Scholar 

  51. Michaelis M, Leopold CS (2015) A measurement system analysis with design of experiments: investigation of the adhesion performance of a pressure sensitive adhesive with the probe tack test. Int J Pharm 496:448–456. https://doi.org/10.1016/j.ijpharm.2015.09.061

    Article  CAS  PubMed  Google Scholar 

  52. Khire A, Vavia P (2013) Effect of permeation enhancers on dynamic mechanical properties of acrylate pressure sensitive adhesives. Int J Pharm 458:141–147. https://doi.org/10.1016/j.ijpharm.2013.09.037

    Article  CAS  PubMed  Google Scholar 

  53. Sato E, Yamanishi K, Inui T (2015) Acetal-protected acrylic copolymers for dismantlable adhesives with spontaneous and complete removability. Polymer (Guildf) 64:260–267. https://doi.org/10.1016/j.polymer.2015.01.057

    Article  CAS  Google Scholar 

  54. Lei H, He D, Guo Y (2018) Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer. Appl Surf Sci 442:71–77. https://doi.org/10.1016/j.apsusc.2018.02.134

    Article  CAS  Google Scholar 

  55. Stîngă G, Băran A, Iovescu A (2019) Monitoring the confinement of methylene blue in pyrene labeled poly(acrylic acid). J Mol Liq 273:125–133. https://doi.org/10.1016/j.molliq.2018.10.023

    Article  CAS  Google Scholar 

  56. Sabatini V, Cattò C, Cappelletti G (2018) Protective features, durability and biodegration study of acrylic and methacrylic fluorinated polymer coatings for marble protection. Prog Org Coat 114:47–57. https://doi.org/10.1016/j.porgcoat.2017.10.003

    Article  CAS  Google Scholar 

  57. Baek SS, Jang SH, Hwang SH (2017) Construction and adhesion performance of biomass tetrahydro-geraniol-based sustainable/transparent pressure sensitive adhesives. J Ind Eng Chem 53:429–434. https://doi.org/10.1016/j.jiec.2017.05.017

    Article  CAS  Google Scholar 

  58. Canetta E, Adya AK (2011) Atomic force microscopic investigation of commercial pressure sensitive adhesives for forensic analysis. Forensic Sci Int 210:16–25. https://doi.org/10.1016/j.forsciint.2011.01.029

    Article  CAS  PubMed  Google Scholar 

  59. Lamnatou C, Chemisana D (2013) Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR- and UV-blocking materials. Renew Sustain Energy Rev 18:271–287. https://doi.org/10.1016/j.rser.2012.09.041

    Article  Google Scholar 

  60. Baek SS, Hwang SH (2016) Preparation and adhesion performance of transparent acrylic pressure-sensitive adhesives containing menthyl acrylate. Polym Bull 73:687–701. https://doi.org/10.1007/s00289-015-1510-5

    Article  CAS  Google Scholar 

  61. Karimi Shamsabadi M, Moghbeli MR (2017) Cellulose nanocrystals (CNCs) reinforced acrylic pressure-sensitive adhesives (PSAs) prepared via miniemulsion polymerization. Int J Adhes Adhes 78:155–166. https://doi.org/10.1016/j.ijadhadh.2017.06.024

    Article  CAS  Google Scholar 

  62. Lee SH, You R, Il Yoon Y, Park WH (2017) Preparation and characterization of acrylic pressure-sensitive adhesives based on UV and heat curing systems. Int J Adhes Adhes 75:190–195. https://doi.org/10.1016/j.ijadhadh.2017.03.007

    Article  CAS  Google Scholar 

  63. Czech Z, Kabatc J, Kowalczyk A (2015) Application of selected 2-methylbenzothiazoles AS cationic photoreactive crosslinkers for pressure-sensitive adhesives based on acrylics. Int J Adhes Adhes 58:1–6. https://doi.org/10.1016/j.ijadhadh.2014.12.001

    Article  CAS  Google Scholar 

  64. Zhu M, Lin Z, Fang C (2016) Properties of single-component acrylic pressure-sensitive adhesives synthesized using tert-butyl peroxypivalate initiator. Polym Sci Ser A 58:379–385. https://doi.org/10.1134/S0965545X16030202

    Article  CAS  Google Scholar 

  65. Park GH, Kim KT, Ahn YT (2014) The effects of graphene on the properties of acrylic pressure-sensitive adhesive. J Ind Eng Chem 20:4108–4111. https://doi.org/10.1016/j.jiec.2014.01.008

    Article  CAS  Google Scholar 

  66. Dhal PK, Deshpande A, Babu GN (1982) Pressure sensitive adhesives of acrylic polymers containing functional monomers. Polymer (Guildf) 23:937–939. https://doi.org/10.1016/0032-3861(82)90163-X

    Article  CAS  Google Scholar 

  67. Baek SS, Hwang SH (2016) Eco-friendly UV-curable pressure sensitive adhesives containing acryloyl derivatives of monosaccharides and their adhesive performances. Int J Adhes Adhes 70:110–116. https://doi.org/10.1016/j.ijadhadh.2016.06.002

    Article  CAS  Google Scholar 

  68. Czech Z (2004) 2-Ethylhexyl acrylate/4-acryloyloxy benzophenone copolymers as UV-crosslinkable pressure-sensitive adhesives. Polym Bull 52:283–288. https://doi.org/10.1007/s00289-004-0273-1

    Article  CAS  Google Scholar 

  69. Fang C, Jing Y, Lin Z (2017) The application research of environment-friendly reactive surfactants in acrylate emulsion pressure sensitive adhesives. Int J Adhes Adhes 73:1–7. https://doi.org/10.1016/j.ijadhadh.2016.11.002

    Article  CAS  Google Scholar 

  70. Kim YB, Park SC, Kim HK, Hong JW (2008) Dual-curable acrylic pressure-sensitive adhesives based on UV and thermal processes. Macromol Res 16:128–133. https://doi.org/10.1007/BF03218841

    Article  CAS  Google Scholar 

  71. Kowalski A, Czech Z, Byczyński Ł (2013) How does the surface free energy influence the tack of acrylic pressure-sensitive adhesives (PSAs)? J Coat Technol Res 10:879–885. https://doi.org/10.1007/s11998-013-9522-2

    Article  CAS  Google Scholar 

  72. Czech Z, Kowalczyk A, Kabatc J (2012) Influence of selected photoinitiators type II on tack, peel adhesion, and shear strength of UV-crosslinked solvent-borne acrylic pressure-sensitive adhesives used for medical applications. Polym Bull 68:441–452. https://doi.org/10.1007/s00289-011-0563-3

    Article  CAS  Google Scholar 

  73. Czech Z (2006) Solvent-based pressure-sensitive adhesives for removable products. Int J Adhes Adhes 26:414–418. https://doi.org/10.1016/j.ijadhadh.2005.06.009

    Article  CAS  Google Scholar 

  74. Li H, Liang T, Li Y (2015) In situ synthesis and properties of hydrogenated rosin/polyacrylate composite miniemulsions-based pressure sensitive adhesives. J Adhes Sci Technol 29:2220–2232. https://doi.org/10.1080/01694243.2015.1061904

    Article  CAS  Google Scholar 

  75. Zhang X, Liu H, Yue L (2018) Fabrication of acrylic pressure-sensitive adhesives containing maleimide for heat-resistant adhesive applications. Polym Bull. https://doi.org/10.1007/s00289-018-2542-4

    Article  Google Scholar 

  76. Khalina M, Sanei M, Mobarakeh HS, Mahdavian AR (2015) Preparation of acrylic/silica nanocomposites latexes with potential application in pressure sensitive adhesive. Int J Adhes Adhes 58:21–27. https://doi.org/10.1016/j.ijadhadh.2014.12.007

    Article  CAS  Google Scholar 

  77. Sowa D, Czech Z, Byczyński Ł (2014) Peel adhesion of acrylic pressure-sensitive adhesives on selected substrates versus their surface energies. Int J Adhes Adhes 49:38–43. https://doi.org/10.1016/j.ijadhadh.2013.12.013

    Article  CAS  Google Scholar 

  78. Weidong Z (2018) Water soluble acrylic acid pressure sensitive adhesive and preparation method thereof. Patent No: CN108707444A

  79. Lee JH, Lee TH, Shim KS (2016) Molecular weight and crosslinking on the adhesion performance and flexibility of acrylic PSAs. J Adhes Sci Technol 30:2316–2328. https://doi.org/10.1080/01694243.2016.1182382

    Article  CAS  Google Scholar 

  80. Zosel A (1998) The effect of fibrilation on the tack of pressure sensitive adhesives. Int J Adhes Adhes 18:261–271

    Article  Google Scholar 

  81. Czech Z, Wesolowska M (2007) Development of solvent-free acrylic pressure-sensitive adhesives. Eur Polym J 43:3604–3612. https://doi.org/10.1093/heapro/dau032

    Article  CAS  Google Scholar 

  82. Pang B, Ryu CM, Jin X, Il Kim H (2013) Preparation and properties of UV curable acrylic PSA by vinyl bonded graphene oxide. Appl Surf Sci 285:727–731. https://doi.org/10.1016/j.apsusc.2013.08.117

    Article  CAS  Google Scholar 

  83. Kajtna J, Krajnc M (2011) Solventless UV crosslinkable acrylic pressure sensitive adhesives. Int J Adhes Adhes 31:822–831. https://doi.org/10.1016/j.ijadhadh.2011.08.002

    Article  CAS  Google Scholar 

  84. Jamaluddin J, Lee MC (2013) Properties of UV-curable solvent-free pressure sensitive adhesive. J Adhes Sci Technol 27:905–911. https://doi.org/10.1080/01694243.2012.727162

    Article  CAS  Google Scholar 

  85. Zbigniew C, Magdalena W, Agnieszka K (2012) The influence of residue monomers on selected properties of acrylic pressure sensitive adhesives. Drewno Pr Nauk Donies Komunik 55:188

    Google Scholar 

  86. Lee J, Lee T, Shim K (2017) Effect of crosslinking density on adhesion performance and flexibility properties of acrylic pressure sensitive adhesives for flexible display applications. Int J Adhes Adhes 74:137–143. https://doi.org/10.1016/j.ijadhadh.2017.01.005

    Article  CAS  Google Scholar 

  87. Zhang X, Ding Y, Zhang G (2011) Preparation and rheological studies on the solvent based acrylic pressure sensitive adhesives with different crosslinking density. Int J Adhes Adhes 31:760–766. https://doi.org/10.1016/j.ijadhadh.2011.07.004

    Article  CAS  Google Scholar 

  88. Zheng J, Zong Y, Zhao G, Yu Z, Wang M, Zhu C, Gui D (2019) Nematic liquid crystal 4-Cyano-4′-pentylbiphenyl functionalization of MWNTs for improved thermal and mechanical properties of silicone pressure sensitive adhesives. Int J Adhes Adhes. https://doi.org/10.1016/j.ijadhadh.2019.102457

    Article  Google Scholar 

  89. Montméat P, Enot T, De Marco Dutra M, Pellat M, Fournel F (2017) Study of a silicon/glass bonded structure with a UV-curable adhesive for temporary bonding applications. Microelectron Eng 173:13–21. https://doi.org/10.1016/j.mee2017.03.008

    Article  Google Scholar 

  90. Troughton MJ (Ed) (2009) Adhesive bonding. In: Handbook of plastics joining, 2nd edn. Chap 17, William Andrew Publishing, pp 145–173. https://doi.org/10.1016/B978-0-8155-1581-4.50019-6

  91. Lin SB (1994) New silicone pressure-sensitive adhesive technology. Int J Adhes Adhes 14:185–191. https://doi.org/10.1016/0143-7496(94)90029-9

    Article  CAS  Google Scholar 

  92. Yu Q, Yang W, Wang Q, Dong W, Du M, Ma P (2019) Functionalization of cellulose nanocrystals with γ-MPS and its effect on the adhesive behavior of acrylic pressure sensitive adhesives. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.04.049

    Article  PubMed  Google Scholar 

  93. Lee JH, Lee TH, Shim KS (2017) Adhesion performance and recovery of platinum catalyzed silicone PSAs under various temperature conditions for flexible display applications. Mater Lett 208:86–88. https://doi.org/10.1016/j.matlet.2017.05.042

    Article  CAS  Google Scholar 

  94. Ryu C-M, Pang B, Kim H-I, Kim H-J, Park J-W, Lee S-W, Kim K-M (2013) Wettability and adhesion characteristics of photo-crosslinkable adhesives for thin silicon wafer. Int J Adhes Adhes 40:197–201. https://doi.org/10.1016/j.ijadhadh.2012.08.005

    Article  CAS  Google Scholar 

  95. Lin SB (1995) High-temperature stability of silicone polymers and related pressure-sensitive adhesives. Prop Appl Polym Mater 603:37–51. https://doi.org/10.1021/bk-1995-0603.ch003

    Article  CAS  Google Scholar 

  96. Antosik AK, Bednarczyk P, Czech Z (2018) Aging of silicone pressure-sensitive adhesives. Polym Bull 75:1141–1147. https://doi.org/10.1007/s00289-017-2083-2

    Article  CAS  Google Scholar 

  97. Wang W, Zammarano M, Shields JR (2018) A novel application of silicone-based flame-retardant adhesive in plywood. Constr Build Mater 189:448–459. https://doi.org/10.1016/j.conbuildmat.2018.08.214

    Article  CAS  Google Scholar 

  98. White C, Tan K, Wolf A, Carbary L (2010) Advances in structural silicone adhesives. Woodhead Publishing Limited, Sawston

    Book  Google Scholar 

  99. Arellano IH (2019) Silicone perturbation of the polyamide-polyacrylate adhesive interface. Mater Lett 244:1–5. https://doi.org/10.1016/j.matlet.2019.02.053

    Article  CAS  Google Scholar 

  100. Robeyns C, Picard L, Ganachaud F (2018) Synthesis, characterization and modification of silicone resins: an “Augmented Review”. Prog Org Coat 125:287–315. https://doi.org/10.1016/j.porgcoat.2018.03.025

    Article  CAS  Google Scholar 

  101. Thousand JD, Smith ST (2019) A direct silicon bonded reference object for performance assessment of computed tomography systems. Precis Eng 58:16–24. https://doi.org/10.1016/j.precisioneng.2019.04.017102

    Article  Google Scholar 

  102. Peloquin RL, Everaerts AI, Wilson KD, Galick SJ (1997) Pressure sensitive adhesives for use on low energy surfaces, US Patent US6280557B1

  103. Sobieski LA, Tangney TJ (1989) Silicone pressure sensitive adhesives. In: Satas D (ed) Handbook of pressure sensitive adhesive technology, 2nd edn. Van Nostrand Reinhold, New York, pp 508–517

    Chapter  Google Scholar 

  104. Axtmann RC (1985) Desilication of geothermal water. US Patent: 4378295. Geothermics 14:595–599. https://doi.org/10.1016/0375-6505(85)90011-2

    Article  Google Scholar 

  105. Czech Z, Goracy K (2005) Characterization of the crosslinking process of silicone pressure-sensitive adhesives. Polimery 50(10):762–764

    Article  CAS  Google Scholar 

  106. Taylor P, Zosel A (2012) The effect of bond formation on the tack of polymers. J Adhes Sci Technol. https://doi.org/10.1163/156856197X00237

    Article  Google Scholar 

  107. Petrie EM (2004) Silicone pressure sensitive adhesives. www.specialchem4adhesives.com. Accessed 20 Dec 2019

  108. Yong Q, Liao B, Huang J (2018) Preparation and characterization of a novel low gloss waterborne polyurethane resin. Surf Coat Technol 341:78–85. https://doi.org/10.1016/j.surfcoat.2018.01.012

    Article  CAS  Google Scholar 

  109. Kalaivani SS, Muthukrishnaraj A, Sivanesan S, Ravikumar L (2016) Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution. Process Saf Environ Prot 104:11–23. https://doi.org/10.1016/j.psep.2016.08.010

    Article  CAS  Google Scholar 

  110. Lin W, Lee W (2017) Effects of the NCO/OH molar ratio and the silica contained on the properties of waterborne polyurethane resins. Colloids Surf A Physicochem Eng Asp 522:453–460. https://doi.org/10.1016/j.colsurfa.2017.03.022

    Article  CAS  Google Scholar 

  111. Saeed A, Shabir G (2013) Synthesis of thermally stable high gloss water dispersible polyurethane/polyacrylate resins. Prog Org Coat 76:1135–1143. https://doi.org/10.1016/j.porgcoat.2013.03.009

    Article  CAS  Google Scholar 

  112. Fuensanta M, Martín-Martínez JM (2018) Thermoplastic polyurethane coatings made with mixtures of polyethers of different molecular weights with pressure sensitive adhesion property. Prog Org Coat 118:148–156. https://doi.org/10.1016/j.porgcoat.2017.11.021

    Article  CAS  Google Scholar 

  113. Saleh S, Zurairahetty N, Yunus M (2019) Improving the strength of weak soil using polyurethane grouts: a review. Constr Build Mater 202:738–752. https://doi.org/10.1016/j.conbuildmat.2019.01.048

    Article  CAS  Google Scholar 

  114. Hu D, Li L, Li Y, Yang C (2017) Restructuring the surface of polyurethane resin enforced filter media to separate surfactant stabilized oil-in-water emulsions via coalescence. Sep Purif Technol 172:59–67. https://doi.org/10.1016/j.seppur.2016.07.051

    Article  CAS  Google Scholar 

  115. Fuensanta M, Martin-Martínez JM (2019) Thermoplastic polyurethane pressure sensitive adhesives made with mixtures of polypropylene glycols of different molecular weights. Int J Adhes Adhes 88:81–90. https://doi.org/10.1016/j.ijadhadh.2018.11.002

    Article  CAS  Google Scholar 

  116. Fu H, Wang Y, Chen W (2015) A novel silanized CoFe2O4/fluorinated waterborne polyurethane pressure sensitive adhesive. Appl Surf Sci 351:1204–1212. https://doi.org/10.1016/j.apsusc.2015.06.121

    Article  CAS  Google Scholar 

  117. Huaxin Y, Gang C (2018) The preparation method of flame retardant polyurethane pressure sensitive adhesive Patent No: CN109053995A

  118. Wang Y, Chen S, Chen X (2019) Controllability of epoxy equivalent weight and performance of hyperbranched epoxy resins. Compos Part B 160:615–625. https://doi.org/10.1016/j.compositesb.2018.12.103

    Article  CAS  Google Scholar 

  119. Sheinbaum M, Sheinbaum L, Weizman O (2019) Toughening and enhancing mechanical and thermal properties of adhesives and glass-fiber reinforced epoxy composites by brominated epoxy. Compos Part B. https://doi.org/10.1016/j.compositesb.2019.02.020

    Article  Google Scholar 

  120. Luo X, Yu X, Ma Y (2018) Preparation and cure kinetics of epoxy with nanodiamond modified with liquid crystalline epoxy. Thermochim Acta 663:1–8. https://doi.org/10.1016/j.tca.2018.03.003

    Article  CAS  Google Scholar 

  121. Shokrian MD, Shelesh-nezhad K, Najjar R (2019) Toughening effect of nanocomposite-wall microcapsules on the fracture behavior of epoxy. Polymer (Guildf). https://doi.org/10.1016/j.polymer.2019.02.027

    Article  Google Scholar 

  122. Farzi G, Lezgy-nazargah M, Imani A (2019) Mechanical, thermal and microstructural properties of epoxy-OAT composites. Constr Build Mater 197:12–20. https://doi.org/10.1016/j.conbuildmat.2018.11.202

    Article  CAS  Google Scholar 

  123. Ahangaran F, Hayaty M, Navarchian AH, Pei Y (2019) Development of self-healing epoxy composites via incorporation of microencapsulated epoxy and mercaptan in poly (methyl methacrylate) shell. Polym Test 73:395–403. https://doi.org/10.1016/j.polymertesting.2018.11.041

    Article  CAS  Google Scholar 

  124. Incerti D, Wang T, Carolan D, Fergusson A (2018) Curing rate effects on the toughness of epoxy polymers. Polymer (Guildf) 159:116–123. https://doi.org/10.1016/j.polymer.2018.11.008

    Article  CAS  Google Scholar 

  125. Peng Y, He X, Wu Q (2018) An efficient way for the synthesis of epoxy resin polymers with thermoreversible cross-linking. Polyhedron. https://doi.org/10.1016/j.poly.2018.09.040

    Article  Google Scholar 

  126. Chen S, Xu Z, Zhang D (2018) Synthesis and application of epoxy-ended hyperbranched polymers. Chem Eng J 343:283–302. https://doi.org/10.1016/j.cej.2018.03.014

    Article  CAS  Google Scholar 

  127. Jin F, Li X, Park S (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026

    Article  CAS  Google Scholar 

  128. Frias CF, Serra AC, Ramalho A (2017) Preparation of fully biobased epoxy resins from soybean oil based amine hardeners. Ind Crop Prod 109:434–444. https://doi.org/10.1016/j.indcrop.2017.08.041

    Article  CAS  Google Scholar 

  129. Wazarkar K, Kathalewar M, Sabnis A (2018) Anticorrosive and insulating properties of cardanol based anhydride curing agent for epoxy coatings. React Funct Polym 122:148–157. https://doi.org/10.1016/j.reactfunctpolym.2017.11.015

    Article  CAS  Google Scholar 

  130. Zolghadr M, Zohuriaan-mehr MJ, Shakeri A, Salimi A (2019) Epoxy resin modification by reactive bio-based furan derivatives: curing kinetics and mechanical properties. Thermochim Acta 673:147–157. https://doi.org/10.1016/j.tca.2019.01.025

    Article  CAS  Google Scholar 

  131. El-ghazawy RA, El-saeed AM, El-sockary MA (2015) Rosin based epoxy coating: synthesis, identification and characterization. Eur Polym J 69:403–415. https://doi.org/10.1016/j.eurpolymj.2015.06.025

    Article  CAS  Google Scholar 

  132. Laurentino LS, Medeiros AMMS, Machado F, Costa C, Araújo PHH, Sayer C (2018) Synthesis of a biobased monomer derived from castor oil and copolymerization in aqueous medium. Chem Eng Res Des 137:213–220. https://doi.org/10.1016/j.cherd.2018.07.014

    Article  CAS  Google Scholar 

  133. Goerz O, Ritter H (2013) Polymers with shape memory effect from renewable resources: crosslinking of polyesters based on isosorbide, itaconic acid and succinic acid. Polym Int. https://doi.org/10.1002/pi.4443

    Article  Google Scholar 

  134. Dai J, Ma S, Wu Y (2015) Properties and bio-based content enhancement. Green Chem. https://doi.org/10.1039/c4gc02057j

    Article  Google Scholar 

  135. Jiang H, Sun L, Zhang Y (2019) Novel biobased epoxy resin thermosets derived from eugenol and vanillin. Polym Degrad Stab 160:45–52. https://doi.org/10.1016/j.polymdegradstab.2018.12.007

    Article  CAS  Google Scholar 

  136. Łukaszczyk J, Janicki B, Kaczmarek M (2011) Synthesis and properties of isosorbide based epoxy resin. Eur Polym J 47:1601–1606. https://doi.org/10.1016/j.eurpolymj.2011.05.009

    Article  CAS  Google Scholar 

  137. Xin J, Zhang P (2014) Study of green epoxy resins derived from renewable cinnamic acid and dipentene: synthesis, curing and properties. RSC Adv. https://doi.org/10.1039/c3ra47927g

    Article  Google Scholar 

  138. Devi R, Gogoi D, Bora P, Das SK (2016) Synthesis of diverse catechin congeners via diastereoselective intramolecular epoxy-arene cyclization. Tetrahedron 72:4878–4888. https://doi.org/10.1016/j.tet.2016.06.059

    Article  CAS  Google Scholar 

  139. Toldy A, Niedermann P, Szeb G (2015) Characterization of high glass transition temperature sugar-based epoxy resin composites with jute and carbon fibre reinforcement. Compos Sci Technol 117:62–68. https://doi.org/10.1016/j.compscitech.2015.06.001

    Article  CAS  Google Scholar 

  140. Ahn BK, Kraft S, Wang D, Sun XS (2011) Thermally stable, transparent, pressure-sensitive adhesives from epoxidized and dihydroxyl soybean oil. Biomacromol 12:1839–1843. https://doi.org/10.1021/bm200188u

    Article  CAS  Google Scholar 

  141. Ciannamea EM, Ruseckaite RA (2018) Pressure sensitive adhesives based on epoxidized soybean oil: correlation between curing conditions and rheological properties. JAOCS J Am Oil Chem Soc 95:525–532. https://doi.org/10.1002/aocs.12046

    Article  CAS  Google Scholar 

  142. Li A, Li K (2015) Development and characterization of pressure-sensitive adhesives from dimer acid and epoxides. ACS, Washington, DC, pp 411–429. https://doi.org/10.1021/bk-2015-1192.ch025

    Book  Google Scholar 

  143. Ahn BK, Sung J, Sun XS (2012) Phosphate esters functionalized dihydroxyl soybean oil tackifier of pressure-sensitive adhesives. JAOCS J Am Oil Chem Soc 89:909–915. https://doi.org/10.1007/s11746-011-1978-6

    Article  CAS  Google Scholar 

  144. Li A, Li K (2014) Pressure-sensitive adhesives based on soybean fatty acids. RSC Adv 4:21521–21530. https://doi.org/10.1039/c4ra03557g

    Article  CAS  Google Scholar 

  145. Fujita M, Kajiyama M, Takemura A (1998) Effects of miscibility on peel strength of natural-rubber-based pressure-sensitive adhesives. J Appl Polym Sci 70:777–784. https://doi.org/10.1002/(SICI)1097-4628(19981024)70:4%3c777:AID-APP18%3e3.0.CO;2-U

    Article  CAS  Google Scholar 

  146. Deng X (2018) Progress on rubber-based pressure-sensitive adhesives. J Adhes 94:77–96. https://doi.org/10.1080/00218464.2016.1249573

    Article  CAS  Google Scholar 

  147. Yoksan R (2008) Epoxidized natural rubber for adhesive applications. Nat Sci 42:325–332. https://doi.org/10.1007/978-3-642-14094-5

    Article  Google Scholar 

  148. Athavale S (2017) Natural rubber latex based pressure sensitive adhesives. J Polym Environ. https://doi.org/10.13140/RG.2.2.15791.94884

    Article  Google Scholar 

  149. Khan I, Poh BT, Lee KE (2013) Material properties and statistical analysis of natural rubber-based adhesives. J Polym Environ 21:833–849. https://doi.org/10.1007/s10924-012-0559-6

    Article  CAS  Google Scholar 

  150. Radabutra S, Saengsuwan S, Jitchati R, Kalapat M (2017) Preparation and characterization of modified telechelic natural rubber-based pressure-sensitive adhesive. J Adhes Sci Technol 31(24):2682–2696. https://doi.org/10.1080/01694243.2017.1325558

    Article  CAS  Google Scholar 

  151. Robertson F, Wang Y, Rosing H (2014) An oligomeric switch that rapidly decreases the peel strength of a pressure-sensitive adhesive. Int J Adhes Adhes 55:64–68. https://doi.org/10.1016/j.ijadhadh.2014.07.016

    Article  CAS  Google Scholar 

  152. Takahashi K, Shimizu M, Inaba K (2013) Tack performance of pressure-sensitive adhesive tapes under tensile loading. Int J Adhes Adhes 45:90–97. https://doi.org/10.1016/j.ijadhadh.2013.05.005

    Article  CAS  Google Scholar 

  153. Sasaki M, Fujita K, Adachi M (2008) The effect of tackifier on phase structure and peel adhesion of a triblock copolymer pressure-sensitive adhesive. Int J Adhes Adhes 28:372–381. https://doi.org/10.1016/j.ijadhadh.2007.11.002

    Article  CAS  Google Scholar 

  154. Morel N, Tordjeman P, Duwattez J, Papon E (2004) Scaling properties of contact area of pressure-sensitive adhesives. J Colloid Interface Sci 280:374–379. https://doi.org/10.1016/j.jcis.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  155. Czech Z (2004) Multifunctional propyleneimines-new generation of crosslinkers for solvent-based pressure-sensitive adhesives. Int J Adhes Adhes 24:503–511. https://doi.org/10.1016/j.ijadhadh.2004.01.005

    Article  CAS  Google Scholar 

  156. Deri JA, Moura JMF (2017) New York city taxi analysis with graph signal processing. In: IEEE global conference on signal and information processing (GlobalSIP), vol 21, pp 1275–1279. https://doi.org/10.1109/GlobalSIP.2016.7906046

  157. Hayashida S, Sugaya T, Kuramoto S (2015) Impact strength of joints bonded with high-strength pressure-sensitive adhesive. Int J Adhes Adhes 56:61–72. https://doi.org/10.1016/j.ijadhadh.2014.09.005

    Article  CAS  Google Scholar 

  158. Raja PR, Hagood AG, Peters MA, Croll SG (2013) Evaluation of natural rubber latex-based PSAs containing aliphatic hydrocarbon tackifier dispersions with different softening points Adhesive properties at different conditions. Int J Adhes Adhes 41:160–170. https://doi.org/10.1016/j.ijadhadh.2012.11.009

    Article  CAS  Google Scholar 

  159. Griffith Jr (2002) Pressure sensitive adhesive tape containing natural rubber latex. US Patent: US 6,489,024 B2

  160. Leong YC, Lee LMS, Gan SN (2003) The viscoelastic properties of natural rubber pressure-sensitive adhesive using acrylic resin as a tackifier. J Appl Polym Sci 88:2118–2123. https://doi.org/10.1002/app.11843

    Article  CAS  Google Scholar 

  161. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  162. Ismail H, Poh BT (2000) Cure and tear properties of ENR 25/SMR L and ENR 50/SMR L blends. Eur Polym J 36:2403–2408. https://doi.org/10.1016/S0014-3057(00)00023-9

    Article  CAS  Google Scholar 

  163. Poh BT, Te CS (2000) Cure index and activation energy of vulcanization of natural rubber and expoxidized natural rubber vulcanized in the presence of antioxidants. J Appl Polym Sci 77:3234–3238. https://doi.org/10.1002/1097-4628(20000929)77

    Article  CAS  Google Scholar 

  164. Poh BT, Khok GK (2000) Tensile property of epoxidized natural rubber/natural rubber blends. Polym Plast Technol Eng 39:151–161. https://doi.org/10.1081/PPT-100100021

    Article  Google Scholar 

  165. Poh BT, Jaffri JB (1999) Abrasion property of epoxidized natural rubber. Polym Plast Technol Eng 38:341–350. https://doi.org/10.1080/03602559909351582

    Article  CAS  Google Scholar 

  166. Sadequl AM, Ishiaku US, Ismail H, Poh BT (1998) The effect of accelerator/sulphur ratio on the scorch time of epoxidized natural rubber. Eur Polym J 34:1998

    Article  Google Scholar 

  167. Poh BT, Chen MF, Ding BS (1996) Cure characteristics of unaccelerated sulfur vulcanization of epoxidized natural rubber. J Appl Polym Sci 60:1569–1574. https://doi.org/10.1002/(sici)1097-4628(19960606)60:10%3c1569:aid-app7%3e3.3.co;2-k

    Article  CAS  Google Scholar 

  168. Poh BT, Kwok CP, Lim GH (1995) Reversion behaviour of epoxidized natural rubber. Eur Polym J 31:223–226. https://doi.org/10.1016/0014-3057(94)00167-7

    Article  CAS  Google Scholar 

  169. Poh BT, Tang WL (1995) Concentration effect of stearic acid on scorch behavior of epoxidized natural rubber. J Appl Polym Sci 55:537–542. https://doi.org/10.1002/app.1995.070550318

    Article  CAS  Google Scholar 

  170. Poh BT, Tan BK (1991) Mooney scorch time of epoxidized natural rubber. J Appl Polym Sci 42:1407–1416. https://doi.org/10.1002/app.1991.070420525

    Article  CAS  Google Scholar 

  171. Nowak MJ, Severtson SJ, Wang Kroll MS (2003) Properties controlling the impact of styrenic block copolymer based pressure-sensitive adhesives on paper recycling. Ind Eng Chem Res 42(8):1681–1687. https://doi.org/10.1021/ie0208974

    Article  CAS  Google Scholar 

  172. Daoulas KC, Theodorou DN, Roos A, Creton C (2004) Experimental and self-consistent-field theoretical study of styrene block copolymer self-adhesive materials. Macromolecules 37(13):5093–5109. https://doi.org/10.1021/ma035383a

    Article  CAS  Google Scholar 

  173. He Q, Hu Y, Pollock A (2013) Hot meltadhesives containing styrene butadiene block copolymer. US Patent no: US 8,378,015 B2

  174. Nakajima N, Babrowicz R, Harrell ER (1992) Rheology, composition, and peel-mechanism of block copolymer–tackifier-based pressure sensitive adhesives. J Appl Polym Sci 44:1437–1456. https://doi.org/10.1002/app.1992.070440814

    Article  CAS  Google Scholar 

  175. Akiyama S, Kobori Y, Sugisaki A (2000) Phase behavior and pressure sensitive adhesive properties in blends of poly(styrene-b-isoprene-b-styrene) with tackifier resin. Polymer (Guildf) 41:4021–4027. https://doi.org/10.1016/S0032-3861(99)00585-6

    Article  CAS  Google Scholar 

  176. Harrison DJP, Johnson JF, Yates WR (1982) Aging of pressure-sensitive adhesives I: stability of styrene-lsoprene-styrene block copolymer films at 95°C. Polym Eng Sci 22:865–869. https://doi.org/10.1002/pen.760221403

    Article  CAS  Google Scholar 

  177. Lebedev EV, Shose K (2011) hybrid organo–inorganic polymer systems: synthesis, structure, and properties. Theor Exp Chem 46(6):409–415

    Article  CAS  Google Scholar 

  178. Iqbal S, Ahmad S (2018) Recent development in hybrid conducting polymers: synthesis, applications and future prospects. J Ind Eng Chem 60:53–84. https://doi.org/10.1016/j.jiec.2017.09.038

    Article  CAS  Google Scholar 

  179. He Z, Jiang C, Song C (2019) Inverted polymer/quantum-dots hybrid white light emitting diodes. Thin Solid Films 669:34–41. https://doi.org/10.1016/j.tsf.2018.10.028

    Article  CAS  Google Scholar 

  180. Shaiq S, Maraj EN, Iqbal Z (2019) Remarkable role of C3H8O2 on transportation of MoS2 SiO2 hybrid nanoparticles influenced by thermal deposition and internal heat generation. J Phys Chem Solids 126:294–303. https://doi.org/10.1016/j.jpcs.2018.11.028

    Article  CAS  Google Scholar 

  181. Nowakowska M, Szczubia K (2017) Photoactive polymeric and hybrid systems for photocatalytic degradation of water pollutants. Polym Degrad Stab 145:120–141. https://doi.org/10.1016/j.polymdegradstab.2017.05.021

    Article  CAS  Google Scholar 

  182. Wang Y, Feng L, Miao X (2019) Multifunctional energy devices caused by ionic behaviors in perovskite-polymer hybrid films. Synth Met 250:31–34. https://doi.org/10.1016/j.synthmet.2019.02.009

    Article  CAS  Google Scholar 

  183. Khosravi A, Syri S, Assad MEH, Malekan M (2019) Thermodynamic and economic analysis of a hybrid ocean thermal energy conversion/photovoltaic system with hydrogen-based energy storage system. Energy. https://doi.org/10.1016/j.energy.2019.01.100

    Article  Google Scholar 

  184. Ryu J, Yeal Y, Woo M (2018) Experimental and numerical investigations of steel-polymer hybrid floor panels subjected to three-point bending. Eng Struct 175:467–482. https://doi.org/10.1016/j.engstruct.2018.08.030

    Article  Google Scholar 

  185. Mottaghitalab F, Farokhi M, Fatahi Y (2019) New insights into designing hybrid nanoparticles for lung cancer: diagnosis and treatment. J Control Release 295:250–267. https://doi.org/10.1016/j.jconrel.2019.01.009

    Article  CAS  PubMed  Google Scholar 

  186. Mir SH, Nagahara A, Thundat T (2018) Review: organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J Electrochem Soc. https://doi.org/10.1149/2.0191808jes

    Article  Google Scholar 

  187. Ayankojo AG, Reut J, Öpik A, Furchner A (2018) Hybrid molecularly imprinted polymer for amoxicillin detection. Biosens Bioelectron 118:102–107. https://doi.org/10.1016/j.bios.2018.07.042

    Article  CAS  PubMed  Google Scholar 

  188. Wang J, Lu C, Liu Y (2018) Preparation and characterization of natural rosin stabilized nanoparticles via miniemulsion polymerization and their pressure-sensitive adhesive applications. Ind Crop Prod 124:244–253. https://doi.org/10.1016/j.indcrop.2018.07.079

    Article  CAS  Google Scholar 

  189. Zhang Z, Zhang P, Zhang W (2016) Recent advances in organic–inorganic well-defined hybrid polymers using controlled living radical polymerization techniques. Polym Chem. https://doi.org/10.1039/c6py00675b

    Article  PubMed  PubMed Central  Google Scholar 

  190. Evans C (2016) Multi-phase silicone acrylic hybrid visco-elastic compositions and methods of making same. International patent no: WO 2016/130408 Al

  191. Wang Y (2017) Considerations of functional fluoropolymer structure in the design of acrylic–fluorine hybrid PSAs: graft versus telechelic cooligomers. J Appl Polym Sci 46038:1–8. https://doi.org/10.1002/app.46038

    Article  CAS  Google Scholar 

  192. Sanjiv Kasbe P, Kumar N, Manik G (2017) A molecular simulation analysis of influence of lignosulphonate addition on properties of modified 2-ethyl hexyl acrylate/methyl methacrylate/acrylic acid based pressure sensitive adhesive. Int J Adhes Adhes 78:45–54. https://doi.org/10.1016/j.ijadhadh.2017.06.014

    Article  CAS  Google Scholar 

  193. Asahara J, Takemura A, Hori N (2004) Crosslinked acrylic pressure sensitive adhesives. 3. Effect of adherend on film formation. Polymer (Guildf) 45:4917–4924. https://doi.org/10.1016/j.polymer.2004.05.009

    Article  CAS  Google Scholar 

  194. Czech Z, Pełech R (2009) Thermal degradation of acrylic pressure-sensitive adhesives based on copolymers of 2-ethylhexyl acrylate and acrylic acid. Polimery/Polymers 54:828–832. https://doi.org/10.1016/j.porgcoat.2008.09.017

    Article  CAS  Google Scholar 

  195. Udagama R, Degrandi-contraires E, Creton C (2011) Synthesis of acrylic à polyurethane hybrid latexes by miniemulsion polymerization and their pressure-sensitive adhesive applications. Macromolecules. https://doi.org/10.1021/ma200073d2632-2642

    Article  Google Scholar 

  196. Mehravar S, Ballard N, Agirre A (2016) Relating polymer microstructure to adhesive performance in blends of hybrid polyurethane/acrylic latexes. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2016.12.031

    Article  Google Scholar 

  197. Lopez A, Degrandi-contraires E, Canetta E (2011) Waterborne polyurethane–acrylic hybrid nanoparticles by miniemulsion polymerization: applications in pressure-sensitive adhesives. Langmuir 27:3878–3888. https://doi.org/10.1021/la104830u

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Mhaske.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mapari, S., Mestry, S. & Mhaske, S.T. Developments in pressure-sensitive adhesives: a review. Polym. Bull. 78, 4075–4108 (2021). https://doi.org/10.1007/s00289-020-03305-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03305-1

Keywords

Navigation