Skip to main content
Log in

Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: an efficient anticorrosion coating on mild steel in saline medium

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The present paper reports the fabrication of efficient anticorrosion coating material on mild steel using epoxy phenolic novolac (EPN) polymer. The EPN was prepared by refluxing the mixture of phenol formaldehyde amine and epoxy in a 1:1 weight ratio and characterized by 1H NMR and FT-IR spectral studies. The graphene oxide (GO) was functionalized using 2-{4-[2-hydroxy-3-(propan-2-ylamino) propoxy] phenyl} acetamide and thoroughly characterized by FT-IR, Raman, and energy dispersive X-ray spectroscopies and TEM techniques. The anticorrosion performance of the coated mild steel (MS) samples was studied by electrochemical impedance spectroscopy and potentiodynamic polarization techniques in 3.5 wt% NaCl medium. The results revealed that the anticorrosion ability of EPN coating was significantly enhanced by the incorporation of functionalized graphene oxide (FGO). The corrosion inhibition efficiency of 99.99% is achieved with 0.2 wt% FGO-grafted EPN matrix.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Olajire AA (2018) Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures. J Mol Liq 269:572–606. https://doi.org/10.1016/j.molliq.2018.08.053

    Article  CAS  Google Scholar 

  2. Fihri A, Abdullatif D, Mahfouz R, Al-Baidary H, Bouhrara M (2019) Decorated fibrous silica epoxy coating exhibiting anti-corrosion properties. Prog Org Coat 127:110–116. https://doi.org/10.1016/j.porgcoat.2018.09.025

    Article  CAS  Google Scholar 

  3. Advincula RC (2015) Conducting polymers with superhydrophobic effects as anticorrosion coating. In: Intelligent coatings for corrosion control, pp 409–430. https://doi.org/10.1016/B978-0-12-411467-8.00011-8

  4. Stankiewicz A, Barker MB (2016) Development of self-healing coatings for corrosion protection on metallic structures. Smart Mater Struct 25:1–10. https://doi.org/10.1088/0964-1726/25/8/084013

    Article  CAS  Google Scholar 

  5. Kefallinou Z, Lyon SB, Gibbon SR (2017) A bulk and localised electrochemical assessment of epoxy-phenolic coating degradation. Prog Org Coat 102:88–98. https://doi.org/10.1016/j.porgcoat.2016.04.042

    Article  CAS  Google Scholar 

  6. Jafari Y, Ghoreishi SM, Shabani-Nooshabadi M (2016) Polyaniline/graphene nanocomposite coatings on copper: electropolymerization, characterization, and evaluation of corrosion protection performance. Synth Met 217:220–230. https://doi.org/10.1016/j.synthmet.2016.04.001

    Article  CAS  Google Scholar 

  7. Bandeira RM, van Drunen J, Tremiliosi-Filho G, dos Santos Júnior JR, de Matos JME (2017) Polyaniline/polyvinyl chloride blended coatings for the corrosion protection of carbon steel. Prog Org Coat 106:50–59. https://doi.org/10.1016/j.porgcoat.2017.02.009

    Article  CAS  Google Scholar 

  8. Hu C, Li Y, Kong Y, Ding Y (2016) Preparation of poly (o-toluidine)/nano ZnO/epoxy composite coating and evaluation of its corrosion resistance properties. Synth Met 214:62–70. https://doi.org/10.1016/j.synthmet.2016.01.021

    Article  CAS  Google Scholar 

  9. Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026

    Article  CAS  Google Scholar 

  10. Caldona EB, Al Christopher C, Mangadlao JD, Lim KJA, Pajarito BB, Advincula RC (2018) On the enhanced corrosion resistance of elastomer-modified polybenzoxazine/graphene oxide nanocomposite coatings. React Funct Polym 123:10–19. https://doi.org/10.1016/j.reactfunctpolym.2017.12.004

    Article  CAS  Google Scholar 

  11. Zhang XP, Luo J, Jing TF, Zhang DX, Li BX, Liu F (2018) Porous epoxy phenolic novolac resin polymer microcapsules: tunable release and bioactivity controlled by epoxy value. Colloids Surf B: Biointerfaces 165:165–171. https://doi.org/10.1016/j.colsurfb.2018.02.026

    Article  CAS  Google Scholar 

  12. Atta AM, Abdou MI, Elsayed AAA, Ragab ME (2008) New bisphenol novolac epoxy resins for marine primer steel coating applications. Prog Org Coat 63(4):372–376. https://doi.org/10.1016/j.porgcoat.2008.06.013

    Article  CAS  Google Scholar 

  13. Zhang J, Zhang W, Wei L, Pu L, Liu J, Liu H et al (2019) Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol Mater Eng 304(12):1900374 doi.org/10.1002/mame.201900374

    Article  CAS  Google Scholar 

  14. Meng F, Zhang T, Liu L, Cui Y, Wang F (2019) Failure behaviour of an epoxy coating with polyaniline modified graphene oxide under marine alternating hydrostatic pressure. Surf Coat Technol 361:188–195. https://doi.org/10.1016/j.surfcoat.2019.01.037

    Article  CAS  Google Scholar 

  15. Parhizkar N, Shahrabi T, Ramezanzadeh B (2017) A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film. Corros Sci 123:55–75. https://doi.org/10.1016/j.corsci.2017.04.011

    Article  CAS  Google Scholar 

  16. Di H, Yu Z, Ma Y, Zhang C, Li F, Lv L et al (2016) Corrosion-resistant hybrid coatings based on graphene oxide–zirconia dioxide/epoxy system. J Taiwan Inst Chem Eng 67:511–520. https://doi.org/10.1016/j.jtice.2016.08.008

    Article  CAS  Google Scholar 

  17. Ramezanzadeh B, Niroumandrad S, Ahmadi A, Mahdavian M, Moghadam MM (2016) Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros Sci 103:283–304. https://doi.org/10.1016/j.corsci.2015.11.033

    Article  CAS  Google Scholar 

  18. Zheng H, Guo M, Shao Y, Wang Y, Liu B, Meng G (2018) Graphene oxide–poly (urea–formaldehyde) composites for corrosion protection of mild steel. Corros Sci 139:1–12. https://doi.org/10.1016/j.corsci.2018.04.036

    Article  CAS  Google Scholar 

  19. Dai YX, Lv FN, Wang B, Chen Y (2018) Thermoresponsive phenolic formaldehyde amines with strong intrinsic photoluminescence: preparation, characterization and application as hardeners in waterborne epoxy resin formulations. Polymer 145:454–462. https://doi.org/10.1016/j.polymer.2018.05.007

    Article  CAS  Google Scholar 

  20. Gurnule WB, Katkamwar SS (2012) Selective removal of toxic metal ions from waste water using phenol formaldehyde type chelating resins. Rasayan J Chem 5(3):365–375

    CAS  Google Scholar 

  21. Raza MA, Rehman ZU, Ghauri FA (2018) Corrosion study of silane-functionalized graphene oxide coatings on copper. Thin Solid Films 663:93–99. https://doi.org/10.1016/j.tsf.2018.07.046

    Article  CAS  Google Scholar 

  22. Chaiyakun S, Witit-Anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, Limsuwan P (2012) Preparation and characterization of graphene oxide nanosheets. Procedia Eng 32:759–764. https://doi.org/10.1016/j.proeng.2012.02.009

    Article  CAS  Google Scholar 

  23. Zhang J, Li P, Zhang Z, Wang X, Tang J, Liu H et al (2019) Solvent-free graphene liquids: promising candidates for lubricants without the base oil. J Colloid Interface Sci 542:159–167. https://doi.org/10.1016/j.jcis.2019.01.135

    Article  CAS  Google Scholar 

  24. Jing Q, Liu W, Pan Y, Silberschmidt VV, Li L, Dong Z (2015) Chemical functionalization of graphene oxide for improving mechanical and thermal properties of polyurethane composites. Mater Des 85:808–814. https://doi.org/10.1016/j.matdes.2015.07.101

    Article  CAS  Google Scholar 

  25. Kowsari E, Mohammadi M (2016) Synthesis of reduced and functional graphene oxide with magnetic ionic liquid and its application as an electromagnetic-absorbing coating. Compos Sci Technol 126:106–114. https://doi.org/10.1016/j.compscitech.2016.02.019

    Article  CAS  Google Scholar 

  26. Sadanandhan NK, Cheriyathuchenaaramvalli M, Devaki SJ, Menon AR (2017) PEDOT-reduced graphene oxide-silver hybrid nanocomposite modified transducer for the detection of serotonin. J Electroanal Chem 794:244–253. https://doi.org/10.1016/j.jelechem.2017.04.027

    Article  CAS  Google Scholar 

  27. Kumar S, Wani MY, Arranja CT, Castro RA, Paixão JA, Sobral AJ (2018) Synthesis, physicochemical and optical properties of bis-thiosemicarbazone functionalized graphene oxide. Spectrochim Acta A Mol Biomol Spectrosc 188:183–188. https://doi.org/10.1016/j.saa.2017.06.045

    Article  CAS  Google Scholar 

  28. Li J, Ecco L, Fedel M, Ermini V, Delmas G, Pan J (2015) In-situ AFM and EIS study of a solventborne alkyd coating with nanoclay for corrosion protection of carbon steel. Prog Org Coat 87:179–188. https://doi.org/10.1016/j.porgcoat.2015.06.003

    Article  CAS  Google Scholar 

  29. Zhu K, Li X, Wang H, Li J, Fei G (2017) Electrochemical and anti-corrosion behaviors of water dispersible graphene/acrylic modified alkyd resin latex composites coated carbon steel. J Appl Polym Sci 134(11):1–12. https://doi.org/10.1002/app.44445

    Article  CAS  Google Scholar 

  30. Mobin M, Aslam J, Alam R (2017) Corrosion protection of poly (aniline-co-N-ethylaniline)/ZnO nanocomposite coating on mild steel. Arab J Sci Eng 42(1):209–224. https://doi.org/10.1007/s13369-016-2234-z

    Article  CAS  Google Scholar 

  31. Mohammadi S, Shariatpanahi H, Taromi FA, Neshati J (2016) Electrochemical and anticorrosion behaviors of hybrid functionalized graphite nano-platelets/tripolyphosphate in epoxy-coated carbon steel. Mater Res Bull 80:7–22. https://doi.org/10.1016/j.materresbull.2015.06.052

    Article  CAS  Google Scholar 

  32. Nayak SR, Mohana KNS (2018) Corrosion protection performance of functionalized graphene oxide nanocomposite coating on mild steel. Surf Interface 11:63–73

    Article  CAS  Google Scholar 

  33. Pourhashem S, Vaezi MR, Rashidi A (2017) Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings. Surf Coat Technol 311:282–294. https://doi.org/10.1016/j.surfin.2018.03.002

    Article  CAS  Google Scholar 

  34. Alam R, Mobin M, Aslam J (2016) Polypyrrole/graphene nanosheets/rare earth ions/dodecyl benzene sulfonic acid nanocomposite as a highly effective anticorrosive coating. Surf Coat Technol 307:382–391. https://doi.org/10.1016/j.surfcoat.2017.01.013

    Article  CAS  Google Scholar 

  35. Gupta A, Srivastava C (2018) Optimum amount of graphene oxide for enhanced corrosion resistance by tin-graphene oxide composite coatings. Thin Solid Films 661:98–107. https://doi.org/10.1016/j.surfcoat.2016.09.010

    Article  CAS  Google Scholar 

  36. Garfias-Mesias LF, Sykes JM, Tuck CDS (1996) The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steels in chloride solutions. Corros Sci 12(38):2267

    Google Scholar 

  37. De Anna PL (1985) The effects of water and chloride ions on the electrochemical behaviour of iron and 304L stainless steel in alcohols. Corros Sci 25(1):43–53

    Article  Google Scholar 

  38. Ghods P, Isgor OB, Brown JR, Bensebaa F, Kingston D (2011) XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. Appl Surf Sci 257(10):4669–4677

    Article  CAS  Google Scholar 

  39. Hurley MF, Scully JR (2006) Threshold chloride concentrations of selected corrosion-resistant rebar materials compared to carbon steel. Corrosion 62(10):892–904

    Article  CAS  Google Scholar 

Download references

Funding

One of the authors, Madhusudhana A. M., received financial support provided by the Council of Scientific & Industrial Research (CSIR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kikkeri Narasimha Shetty Mohana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhusudhana, A.M., Mohana, K.N.S., Hegde, M.B. et al. Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: an efficient anticorrosion coating on mild steel in saline medium. Adv Compos Hybrid Mater 3, 141–155 (2020). https://doi.org/10.1007/s42114-020-00142-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-020-00142-8

Keywords

Navigation