Skip to main content

Advertisement

Log in

The epoxy resin system: function and role of curing agents

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

A Correction to this article was published on 09 October 2023

This article has been updated

Abstract

Curing agents are critical components of aqueous epoxy resin systems. Unfortunately, its uses and applications are restricted because of its low emulsifying yields. Epoxy resins are frequently used in electrical devices, castings, packaging, adhesive, corrosion resistance, and dip coating. In the presence of curing agents, epoxy resins become rigid and infusible. Eco-friendliness and mechanical functionality have emerged as vulcanization properties. Curing agents are used for surface modification, thermodynamic properties, functional approaches to therapeutic procedures, and recent advances in a variety of fields such as commercial and industrial levels. The curing agent has superior construction and mechanical properties when compared to the commercial one, which suggests that it has the potential for use as the architectural and industrial coatings. The thermal stability of cured products is good due to the presence of the imide group and the hydrogenated phenanthrene ring structure. Over the course of the projection period, it is anticipated that the global market for curing agents will continue to expand at a steady rate. The growth of the market is mainly driven by its expanding range in future applications such as adhesives, composites, construction, electrical, electronics, and wind energy. This review focused on the most recent advancements in curing techniques, emphasizing their thermal and mechanical properties. The review also presents a critical discussion of key aspects and bottleneck or research gap of the application of curing agents in the industrial areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from Kyriazis, et al. [43], Copyright Permission MDPI 2022)

Scheme 1
Fig. 2

(Adapted from Tezel, et al. [87], Copyright Permission Elsevier-2022)

Fig. 3

(Adapted from Akbari, et al. [88], Copyright Permission MDPI 2022)

Similar content being viewed by others

Data availability

Data available on request from the authors.

Change history

References

  1. Chen B, Zhang Q, Lu M, Meng H, Qu Z, Xu CA, Jiao E (2021) Synthesis of a novel lignin-based epoxy resin curing agent and study of cure kinetics, thermal, and mechanical properties. J Appl Polym Sci 138(23):50523. https://doi.org/10.1002/app.50523

    Article  CAS  Google Scholar 

  2. Nguyen TKL, Soares BG, Duchet-Rumeau J, Livi S (2017) Dual functions of ILs in the core-shell particle reinforced epoxy networks: curing agent vs dispersion aids. Compos Sci Technol 140:30–38. https://doi.org/10.1016/j.compscitech.2016.12.021

    Article  CAS  Google Scholar 

  3. Aziz T, Farid A, Haq F, Kiran M, Ullah N, Faisal S, Ali A, Khan FU, You S, Bokhari A, Mubashir M, Chuah LF, Show PL (2023) Role of silica-based porous cellulose nanocrystals in improving water absorption and mechanical properties. Environ Res 222:115253. https://doi.org/10.1016/j.envres.2023.115253

    Article  CAS  PubMed  Google Scholar 

  4. Chen Y, Duan H, Ji S, Ma H (2021) Novel phosphorus/nitrogen/boron-containing carboxylic acid as co-curing agent for fire safety of epoxy resin with enhanced mechanical properties. J Hazard Mater 402:123769. https://doi.org/10.1016/j.jhazmat.2020.123769

    Article  CAS  PubMed  Google Scholar 

  5. Aziz T, Farid A, Chinnam S, Haq F, Kiran M, Wani AW, Alothman ZA, Aljuwayid AM, Habila MA, Akhtar MS (2023) Synthesis, characterization and adsorption behavior of modified cellulose nanocrystals towards different cationic dyes. Chemosphere 321:137999. https://doi.org/10.1016/j.chemosphere.2023.137999

    Article  CAS  PubMed  Google Scholar 

  6. Jiang M, Lei Y, Liu X (2018) Curing behaviors and properties of epoxy and self-catalyzed phthalonitrile with improved processability. High Perform Polym 30:710–719. https://doi.org/10.1177/0954008317717594

    Article  CAS  Google Scholar 

  7. Weng Z, Fu J, Zong L, Liu C, Wang J, Jian X (2015) Temperature for curing phthalonitrile-terminated poly(phthalazinone ether nitrile) reduced by a mixed curing agent and its curing behavior. RSC Adv 5(112):92055–92060. https://doi.org/10.1039/C5RA17234A

    Article  CAS  ADS  Google Scholar 

  8. Khattak NS, Ahmad AS, Shah LA, Ara L, Farooq M, Sohail M, Kader SI (2019) Thermal and rheological study of nanocomposites, reinforced with Bi-phase ceramic nanoparticles. Z Phys Chem 233(9):1233–1246. https://doi.org/10.1515/zpch-2018-1338

    Article  CAS  Google Scholar 

  9. Yazdi M, Haddadi Asl V, Pourmohammadi M, Roghani-Mamaqani H (2019) Mechanical properties, crystallinity, and self-nucleation of carbon nanotube-polyurethane nanocomposites. Polym Testing 79:106011. https://doi.org/10.1016/j.polymertesting.2019.106011

    Article  CAS  Google Scholar 

  10. Hussain M, Yasin S, Uddin A, Lu M, Qiang Z, Song Y (2022) Nonlinear rheology of silicone rubber composites with tailored mechanical and dielectric properties. Compos Commun 35:101328. https://doi.org/10.1016/j.coco.2022.101328

    Article  Google Scholar 

  11. Gupta N, Zeltmann SE, Shunmugasamy VC, Pinisetty D (2014) Applications of polymer matrix syntactic foams. JOM 66(2):245–254. https://doi.org/10.1007/s11837-013-0796-8

    Article  CAS  Google Scholar 

  12. Rehman TU, Shah LA, Khan M, Irfan M, Khattak NS (2019) Zwitterionic superabsorbent polymer hydrogels for efficient and selective removal of organic dyes. RSC Adv 9(32):18565–18577. https://doi.org/10.1039/C9RA02488C

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Hussain M, Yasin S, Ali A, Li Z, Fan X, Song Y, Zheng Q, Wang W (2022) Synergistic impact of ionic liquid on interfacial interaction and viscoelastic behaviors of silica filled nitrile butadiene rubber nanocomposites. Compos Part A: Appl Sci Manuf 163:107202. https://doi.org/10.1016/j.compositesa.2022.107202

    Article  CAS  Google Scholar 

  14. Khan MS, Khattak NS, Sohail M (2017) Synthesis and characterization of composites of ceramic nano-particles with non-conducting polymers for dielectric materials production. J Mater Sci Mater Electron 28(2):1997–2003. https://doi.org/10.1007/s10854-016-5756-y

    Article  CAS  Google Scholar 

  15. Ni Y, Chen L, Teng K, Shi J, Qian X, Xu Z, Tian X, Hu C, Ma M (2015) Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl Mater Interfaces 7(21):11583–11591. https://doi.org/10.1021/acsami.5b02552

    Article  CAS  PubMed  Google Scholar 

  16. Wan J, Gan B, Li C, Molina-Aldareguia J, Kalali EN, Wang X, Wang D-Y (2016) A sustainable, eugenol-derived epoxy resin with high biobased content, modulus, hardness and low flammability: Synthesis, curing kinetics and structure–property relationship. Chem Eng J 284:1080–1093. https://doi.org/10.1016/j.cej.2015.09.031

    Article  CAS  Google Scholar 

  17. Aziz T, Fan H, Zhang X, Khan F, Fahad S, Ullah A (2020) Adhesive properties of bio-based epoxy resin reinforced by cellulose nanocrystal additives. J Polym Eng. https://doi.org/10.1515/polyeng-2019-0255

    Article  Google Scholar 

  18. Olawuyi BJ, Saka RO, Nduka DO, Babafemi AJ (2020) Comparative study of superabsorbent polymers and pre-soaked pumice as internal curing agents in rice husk ash based high-performance concrete. In: Boshoff WP, Combrinck R, Mechtcherine V, Wyrzykowski M (eds) 3rd International Conference on the Application of Superabsorbent Polymers (SAP) and Other New Admixtures Towards Smart Concrete. Springer International Publishing, Cham, pp 75–84

    Chapter  Google Scholar 

  19. Khattak NS, Khan MS, Shah LA, Farooq M, Khan A, Ahmad S, Jan SU, Rehman N (2020) The effect of low weight percent multiwalled carbon nanotubes on the dielectric properties of non-conducting polymer/ceramic nanocomposites for energy storage materials. Z Phys Chem 234(1):11–26. https://doi.org/10.1515/zpch-2019-1370

    Article  CAS  Google Scholar 

  20. Tangkokiat P, Thanapornpavornkul T, Muangkaew S, Siriwatwechakul W, Siramanont J, Snguanyat C (2020) Characterization of neutral versus anionic superabsorbent polymers (SAPs) in ion-rich solutions for their use as internal curing agents. In: Boshoff WP, Combrinck R, Mechtcherine V, Wyrzykowski M (eds) 3rd International Conference on the Application of Superabsorbent Polymers (SAP) and Other New Admixtures Towards Smart Concrete. Springer International Publishing, Cham, pp 38–45

    Chapter  Google Scholar 

  21. Aziz T, Fan H, Zhang X, Haq F, Ullah A, Ullah R, Khan FU, Iqbal M (2020) Advance study of cellulose nanocrystals properties and applications. J Polym Environ 28(4):1117–1128. https://doi.org/10.1007/s10924-020-01674-2

    Article  CAS  Google Scholar 

  22. Yang S, Liu W (2019) Research on unconstrained compressive strength and microstructure of calcareous sand with curing agent. J Mar Sci Eng. https://doi.org/10.3390/jmse7090294

  23. Hussain M, Yasin S (2020) Rheological and mechanical properties of silica/nitrile butadiene rubber vulcanizates with eco-friendly ionic liquid. Polymers. https://doi.org/10.3390/polym12112763

    Article  PubMed  PubMed Central  Google Scholar 

  24. Khattak NS, Shah LA, Sohail M, Ahmad S, Farooq M, Ara L, Kader SI (2019) The role of non-ionic surfactants in solubilization and delivery of sparingly soluble drug naproxen sodium (NS): a case study. Z Phys Chem 233(7):933–947. https://doi.org/10.1515/zpch-2018-1241

    Article  CAS  Google Scholar 

  25. Ning FW, Cai YB, Bai Y, Chen B, Zhang F (2019) Effect of expansive agent and internal curing agent on crack resistance of C50 silica fume wet-mix shotcrete. Adv Mech Eng 11(1):1687814018819167. https://doi.org/10.1177/1687814018819167

    Article  CAS  Google Scholar 

  26. Aziz T, Fan H, Haq F, Khan FU, Numan A, Ullah A, Wazir N (2019) Facile modification and application of cellulose nanocrystals. Iran Polym J 28(8):707–724. https://doi.org/10.1007/s13726-019-00734-2

    Article  Google Scholar 

  27. Aziz T, Mehmood S, Haq F, Ullah R, Khan FU, Ullah B, Raheel M, Iqbal M, Ullah A (2021) Synthesis and modification of silica-based epoxy nanocomposites with different sol–gel process enhanced thermal and mechanical properties. J Appl Polym Sci 138(40):51191. https://doi.org/10.1002/app.51191

    Article  CAS  Google Scholar 

  28. Liu C, Liu Y, Liu Z, Hu C, Huang X, Yang L, Wang F (2019) Heat-cured concrete: Improving the early strength and pore structure by activating aluminosilicate internal curing agent with triisopropanolamine. J Am Ceram Soc 102(10):6227–6238. https://doi.org/10.1111/jace.16458

    Article  CAS  Google Scholar 

  29. Li M, Wang Q, Yang J, Guo X, Zhou W (2021) Strength and mechanism of carbonated solidified clay with steel slag curing agent. KSCE J Civ Eng 25(3):805–821. https://doi.org/10.1007/s12205-020-0817-4

    Article  Google Scholar 

  30. Wu T, Zhao J, Ding M, Zhang T, Tao N, Wang X, Zhong J (2020) Preparation of selected spice microparticles and their potential application as nitrite scavenging agents in cured Tilapia muscle. Int J Food Sci Technol 55(9):3153–3161. https://doi.org/10.1111/ijfs.14579

    Article  CAS  Google Scholar 

  31. Jamil MI, Wang Q, Ali A, Hussain M, Aziz T, Zhan X, Zhang Q (2021) Slippery photothermal trap for outstanding deicing surfaces. J Bionic Eng 18(3):548–558. https://doi.org/10.1007/s42235-021-0046-7

    Article  Google Scholar 

  32. Aziz T, Ullah A, Fan H, Jamil MI, Khan FU, Ullah R, Iqbal M, Ali A, Ullah B (2021) Recent progress in silane coupling agent with its emerging applications. J Polym Environ 29(11):3427–3443. https://doi.org/10.1007/s10924-021-02142-1

    Article  CAS  Google Scholar 

  33. Mirmohseni A, Pourtaghi-Zahed H (2020) Polyamidoamines based on castor oil-styrene co-oligomer/triethylenetetramine as curing agents in high-performance epoxy coatings. J Appl Polym Sci 137(36):49082. https://doi.org/10.1002/app.49082

    Article  CAS  Google Scholar 

  34. Fu K, Xie Q, Lü F, Duan Q, Wang X, Zhu Q, Huang Z (2019) Molecular dynamics simulation and experimental studies on the thermomechanical properties of epoxy resin with different anhydride curing agents. Polymers (Basel). https://doi.org/10.3390/polym11060975

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ali A, Uddin A, Jamil MI, Shen X, Abbas M, Aziz T, Hussain M, Hussain S, Fang R, Fan Z, Guo L (2021) Kinetics and mechanistic investigations of ethylene-propylene copolymerizations catalyzed with symmetrical metallocene and activated by TIBA/borate. J Organometallic Chem 949:121929. https://doi.org/10.1016/j.jorganchem.2021.121929

    Article  CAS  Google Scholar 

  36. Irfan M, Khan M, Rehman TU, Ali I, Shah LA, Khattak NS, Khan MS (2021) Synthesis and rheological survey of xanthan gum based terpolymeric hydrogels. Z Phys Chem 235:(5) 609-628. https://doi.org/10.1515/zpch-2019-1574

  37. Liu Y, Bian D, Zhao Y (2019) The influence of curing agents on thermal property and corrosion resistance of chemically bonded phosphate ceramic coatings. J Sol-gel Sci Technol 89(2):403–415. https://doi.org/10.1007/s10971-018-4907-4

    Article  CAS  Google Scholar 

  38. Spiesschaert Y, Guerre M, De Baere I, Van Paepegem W, Winne JM, Du Prez FE (2020) Dynamic curing agents for amine-hardened epoxy vitrimers with short (Re)processing times. Macromolecules 53(7):2485–2495. https://doi.org/10.1021/acs.macromol.9b02526

    Article  CAS  ADS  Google Scholar 

  39. Ali A, Tufail MK, Jamil MI, Yaseen W, Iqbal N, Hussain M, Ali A, Aziz T, Fan Z, Guo L (2021) Comparative analysis of ethylene/diene copolymerization and ethylene/propylene/diene terpolymerization using ansa-zirconocene catalyst with alkylaluminum/borate activator: the effect of conjugated and nonconjugated dienes on catalytic behavior and polymer microstructure. Molecules 26(7):2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wazarkar K, Sabnis A (2020) Sustainable cardanol-based multifunctional carboxyl curing agents for epoxy coatings: Si–S synergism. J Coat Technol Res 17(5):1217–1230. https://doi.org/10.1007/s11998-020-00341-4

    Article  CAS  Google Scholar 

  41. Aziz T, Haq F, Farid A, Kiran M, Faisal S, Ullah A, Ullah N, Bokhari A, Mubashir M, Chuah LF, Show PL (2023) Challenges associated with cellulose composite material: Facet engineering and prospective. Environ Res 223:115429. https://doi.org/10.1016/j.envres.2023.115429

    Article  CAS  PubMed  Google Scholar 

  42. Ikemura K, Tanaka H, Fujii T, Deguchi M, Negoro N, Endo T, Kadoma Y (2011) Design of a new, multi-purpose, light-curing adhesive comprising a silane coupling agent, acidic adhesive monomers and dithiooctanoate monomers for bonding to varied metal and dental ceramic materials. Dent Mater J 30(4):493–500. https://doi.org/10.4012/dmj.2011-012

    Article  CAS  PubMed  Google Scholar 

  43. Kyriazis A, Kilian R, Sinapius M, Rager K, Dietzel A (2021) Tensile strength and structure of the interface between a room-curing epoxy resin and thermoplastic films for the purpose of sensor integration. Polymers. https://doi.org/10.3390/polym13030330

    Article  PubMed  PubMed Central  Google Scholar 

  44. Neisiany RE, Khorasani SN, J. Kong Yoong Lee, S. Ramakrishna, (2016) Encapsulation of epoxy and amine curing agent in PAN nanofibers by coaxial electrospinning for self-healing purposes. RSC Adv 6(74):70056–70063. https://doi.org/10.1039/C6RA06434E

    Article  CAS  ADS  Google Scholar 

  45. Franco-Marquès E, Méndez JA, Gironès J, Ginebra MP, Pèlach MA (2009) Evaluation of the influence of the addition of biodegradable polymer matrices in the formulation of self-curing polymer systems for biomedical purposes. Acta Biomater 5(8):2953–2962. https://doi.org/10.1016/j.actbio.2009.04.023

    Article  CAS  PubMed  Google Scholar 

  46. Hu F, La Scala JJ, Yadav SK, Throckmorton J, Palmese GR (2021) Epoxidized soybean oil modified using fatty acids as tougheners for thermosetting epoxy resins: part 2—effect of curing agent and epoxy molecular weight. J Appl Polym Sci 138(24):50579. https://doi.org/10.1002/app.50579

    Article  CAS  Google Scholar 

  47. Park JH, Kim HJ, Kim TH, Kim H-G, Seo B, Lim C-S, Ko WB (2021) Synthesis of a zeolitic imidazolate hybrid nanocomposite and its effects on the physical property changes in the cured epoxy compositions. Appl Nanosci 11(5):1491–1500. https://doi.org/10.1007/s13204-021-01803-w

    Article  CAS  ADS  Google Scholar 

  48. Jilani W, Mzabi N, Fourati N, Zerrouki C, Gallot-Lavallée O, Zerrouki R, Guermazi H (2015) Effects of curing agent on conductivity, structural and dielectric properties of an epoxy polymer. Polymer 79:73–81. https://doi.org/10.1016/j.polymer.2015.09.078

    Article  CAS  Google Scholar 

  49. Li C, Fan H, Aziz T, Bittencourt C, Wu L, Wang D-Y, Dubois P (2018) Biobased epoxy resin with low electrical permissivity and flame retardancy: from environmental friendly high-throughput synthesis to properties. ACS Sustain Chem Eng 6(7):8856–8867. https://doi.org/10.1021/acssuschemeng.8b01212

    Article  CAS  Google Scholar 

  50. Sugumaran B, Lavanya G (2021) Characterization study on the synergistic effect of nano metakaolin and expansive agent on the shrinkage mitigation and strength enhancement of self curing-self compacting concrete. Rev Romana Mater 51(2):186–194

    CAS  Google Scholar 

  51. Ahmed N, Fan H, Dubois P, Zhang X, Fahad S, Aziz T, Wan J (2019) Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications. J Mater Chem A 7(38):21577–21604. https://doi.org/10.1039/C9TA04575A

    Article  CAS  Google Scholar 

  52. Merighi S, Mazzocchetti L, Benelli T, Giorgini L (2021) Evaluation of novel bio-based amino curing agent systems for epoxy resins: effect of tryptophan and guanine. Processes. https://doi.org/10.3390/pr9010042

    Article  Google Scholar 

  53. Li K, Ping T, Zhang H, Zhang J, Cheng J, Gao F (2021) Quantitative evaluation of the non-thermal effect in microwave induced polymer curing. RSC Adv 11(6):3740–3750. https://doi.org/10.1039/D0RA08427A

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Xu C, Yan N, Yang C, Wang X, Jia Z (2021) Effects of platinum catalyst on the dielectric properties of addition cure silicone rubber/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 28(1):142–149. https://doi.org/10.1109/TDEI.2020.009099

    Article  CAS  Google Scholar 

  55. Zhang G-Z, Wang X-Y, Kim T-W, Lim J-Y, Han Y (2021) The Effect of different types of internal curing liquid on the properties of alkali-activated slag (AAS) mortar. Sustainability. https://doi.org/10.3390/su13042407

    Article  Google Scholar 

  56. Jindal S, Maka VK, Moorthy JN (2020) Selective sensing of aliphatic biogenic polyamines by a zwitterionic Cd-MOF based on bisimidazole tetracarboxylic acid linker. J Mater Chem C 8(33):11449–11456. https://doi.org/10.1039/D0TC01126F

    Article  CAS  Google Scholar 

  57. Wan J, Li C, Fan H, Li B-G (2017) Branched 1,6-diaminohexane-derived aliphatic polyamine as curing agent for epoxy: isothermal cure, network structure, and mechanical properties. Ind Eng Chem Res 56(17):4938–4948. https://doi.org/10.1021/acs.iecr.7b00610

    Article  CAS  Google Scholar 

  58. van der Pol TPA, Keene ST, Saes BWH, Meskers SCJ, Salleo A, van de Burgt Y, Janssen RAJ (2019) The mechanism of dedoping PEDOT:PSS by aliphatic polyamines. J Phys Chem C 123(39):24328–24337. https://doi.org/10.1021/acs.jpcc.9b07718

    Article  CAS  Google Scholar 

  59. Zilfyan AV, Avagyan SA, Muradyan AA, Ghazaryan VJ, Ghazaryan HV (2020) Possible role of aliphatic polyamines in the inhibition process of daughter viruses replication in Covid-19 infection. Expediency of adding—difluoromethylornithine to the registry of drugs for Covid-19 infection. New Armenian Medical J 14(4): 4–15

  60. Kadoya WM, Sierra-Alvarez R, Jagadish B, Wong S, Abrell L, Mash EA, Field JA (2021) Covalent bonding of aromatic amine daughter products of 2,4-dinitroanisole (DNAN) with model quinone compounds representing humus via nucleophilic addition. Environ Pollut 268:115862. https://doi.org/10.1016/j.envpol.2020.115862

    Article  CAS  PubMed  Google Scholar 

  61. Garcia JM, Bernardino IRB, Calasans V, Giudici R (2021) Kinetics of the hydrolysis of acetic anhydride using reaction calorimetry: effects of strong acid catalyst and salts. Chem Eng Res Des 166:29–39. https://doi.org/10.1016/j.cherd.2020.11.024

    Article  CAS  Google Scholar 

  62. Zhang X, Luo C, Chen X, Ma W, Li B, Lin Z, Chen X, Li Y, Xie F (2021) Direct synthesis of quinazolinones via the carbon-supported acid-catalyzed cascade reaction of isatoic anhydrides with amides and aldehydes. Tetrahedron Lett 66:152835. https://doi.org/10.1016/j.tetlet.2021.152835

    Article  CAS  Google Scholar 

  63. Cheng AD, Zong MH, Lu GH, Li N (2021) Solvent-promoted oxidation of aromatic alcohols/aldehydes to carboxylic acids by a laccase-TEMPO system: efficient access to 2,5-furandicarboxylic acid and 5-methyl-2-pyrazinecarboxylic acid. Adv Sustain Syst. https://doi.org/10.1002/Adsu.202000297

    Article  Google Scholar 

  64. Godinho B, Gama N, Barros-Timmons A, Ferreira A (2021) Recycling of polyurethane wastes using different carboxylic acids via acidolysis to produce wood adhesives. J Polym Sci 59(8):697–705. https://doi.org/10.1002/pol.20210066

    Article  CAS  Google Scholar 

  65. El-Nemr KF, Mohamed RM (2017) Sorbic acid as friendly curing agent for enhanced properties of ethylene propylene diene monomer rubber using gamma radiation. J Macromol Sci A 54(10):711–719. https://doi.org/10.1080/10601325.2017.1322469

    Article  CAS  Google Scholar 

  66. Liu XH, Fu SY, Xu YZ, Wang CP, Chu FX (2013) Effect of acid curing agent on the foaming of liquefied bamboo-based resol resin. Adv Mat Res 724–725:231–235. https://doi.org/10.4028/www.scientific.net/AMR.724-725.231

    Article  CAS  ADS  Google Scholar 

  67. Girods P, Rogaume Y, Dufour A, Rogaume C, Zoulalian A (2008) SFGP 2007—two-step process of thermo-chemical conversion of wood waste contaminated by aminoplast resins. Int J Chem React Eng. https://doi.org/10.2202/1542-6580.1609

    Article  Google Scholar 

  68. Hou Qingpu HY, Yunzhao YU (1995) Modification of epoxy resins with phenolic hydroxyl-terminated polysiloxane. Chin J Polym Sci 3:235–243

    Google Scholar 

  69. Ferdosian F, Yuan Z, Anderson M, Xu C (2015) Sustainable lignin-based epoxy resins cured with aromatic and aliphatic amine curing agents: curing kinetics and thermal properties. Thermochim Acta 618:48–55. https://doi.org/10.1016/j.tca.2015.09.012

    Article  CAS  Google Scholar 

  70. Chongtum T, Chonkaew W (2013) Kinetic studies on the curing reactions of fluoroepoxy oligomer and cycloaliphatic amine. Multi-Funct Mater Struct Iv 747:753–756. https://doi.org/10.4028/www.scientific.net/AMR.747.753

    Article  CAS  Google Scholar 

  71. Pineda AFE, Garcia FG, Simoes AZ, da Silva EL (2016) Mechanical properties, water absorption and adhesive properties of diepoxy aliphatic diluent-modified DGEBA/Cycloaliphatic amine networks on 316 L stainless steel. Int J Adhes Adhes 68:205–211. https://doi.org/10.1016/j.ijadhadh.2016.02.011

    Article  CAS  Google Scholar 

  72. Liu H, Xu K, Ai H, Zhang L, Chen M (2009) Preparation and characterization of phosphorus-containing Mannich-type bases as curing agents for epoxy resin. Polym Adv Technol 20(9):753–758. https://doi.org/10.1002/pat.1319

    Article  CAS  Google Scholar 

  73. Kalaimani S, Ali BM, Nasar AS (2016) Successful synthesis of blocked polyisocyanates, using easily cleavable phenols as blocking agents, and their deblocking and cure studies. RSC Adv 6(108):106990–107000. https://doi.org/10.1039/C6RA24409B

    Article  CAS  ADS  Google Scholar 

  74. Yasin S, Hussain M, Zheng Q, Song Y (2022) Influence of ionic liquid on rheological behaviors of candle soot and cellulose nanocrystal filled natural rubber nanocomposites. Compos Commun 33:101214. https://doi.org/10.1016/j.coco.2022.101214

    Article  Google Scholar 

  75. Ciobotaru IA, Vaireanu DI, Ciobotaru IE, Barbu OCC (2017) The influence of the curing temperature on the properties of some silane films. Rev de Chim. https://doi.org/10.37358/RC.17.7.5686

  76. Hindmarch RS, Gale GM (1986) Silane moisture-curing-a one-shot extrusion process using the cavity transfer mixer. AMER CHEMICAL SOC INC RUBBER DIV UNIV AKRON PO BOX 499 AKRON, OH 44309–0499:166–166

    Google Scholar 

  77. Quiambao MMS, Laplana DD, Abobo MID, Jancon AG, Salvador SD, Siy HC, Penaloza DP (2019) Rheological characterization of the curing process for a water-based epoxy added with polythiol crosslinking agent. Epitoanyag-J Silicate Based Compos Mater 71(5):162–167. https://doi.org/10.14382/epitoanyag-jsbcm.2019.28

  78. Stowe R (1996) High-power UV lamps for industrial UV curing applications. SPIE1996

  79. Carroll GT, Devon Triplett L, Moscatelli A, Koberstein JT, Turro NJ (2011) Photogeneration of gelatinous networks from pre-existing polymers. J Appl Polym Sci 122(1):168–174. https://doi.org/10.1002/app.34133

    Article  CAS  Google Scholar 

  80. Corcione CE, Frigione M (2012) UV-cured polymer-boehmite nanocomposite as protective coating for wood elements. Prog Org Coat 74(4):781–787. https://doi.org/10.1016/j.porgcoat.2011.06.024

    Article  CAS  Google Scholar 

  81. Sønderbæk-Jørgensen R, Meier S, Dam-Johansen K, Skov AL, Daugaard AE (2022) Reactivity of polysilazanes allows catalyst-free curing of silicones. Macromol Mater Eng 307(9):2200157. https://doi.org/10.1002/mame.202200157

    Article  CAS  Google Scholar 

  82. Matos AM, Nunes S, Costa C, Barroso-Aguiar JL (2019) Spent equilibrium catalyst as internal curing agent in UHPFRC. Cem Concr Compos 104:103362. https://doi.org/10.1016/j.cemconcomp.2019.103362

    Article  CAS  Google Scholar 

  83. Aziz T, Ullah A, Ali A, Shabeer M, Shah MN, Haq F, Iqbal M, Ullah R, Khan FU (2022) Manufactures of bio-degradable and bio-based polymers for bio-materials in the pharmaceutical field. J Appl Polym Sci 139(29):e52624. https://doi.org/10.1002/app.52624

    Article  CAS  Google Scholar 

  84. Yu S, Li X, Zou M, Guo X, Ma H, Wang S (2020) Effect of the aromatic amine curing agent structure on properties of epoxy resin-based syntactic foams. ACS Omega 5(36):23268–23275. https://doi.org/10.1021/acsomega.0c03085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang S, Hou X, Li J, Tian X, Yu Q, Wang Z (2017) A novel curing agent based on diphenylphosphine oxide for flame-retardant epoxy resin. High Perform Polym 30(10):1229–1239. https://doi.org/10.1177/0954008317745957

    Article  CAS  Google Scholar 

  86. Aziz T, Farid A, Haq F, Kiran M, Ullah A, Zhang K, Li C, Ghazanfar S, Sun H, Ullah R, Ali A, Muzammal M, Shah M, Akhtar N, Selim S, Hagagy N, Samy M, Al Jaouni SK (2022) A review on the modification of cellulose and its applications. Polymers. https://doi.org/10.3390/polym14153206

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tezel GB, Sarmah A, Desai S, Vashisth A, Green MJ (2021) Kinetics of carbon nanotube-loaded epoxy curing: rheometry, differential scanning calorimetry, and radio frequency heating. Carbon 175:1–10. https://doi.org/10.1016/j.carbon.2020.12.090

    Article  CAS  Google Scholar 

  88. Akbari V, Jouyandeh M, Paran SM, Ganjali MR, Abdollahi H, Vahabi H, Ahmadi Z, Formela K, Esmaeili A, Mohaddespour A, Habibzadeh S, Saeb MR (2020) Effect of surface treatment of halloysite nanotubes (HNTs) on the kinetics of epoxy resin cure with amines. Polymers. https://doi.org/10.3390/polym12040930

    Article  PubMed  PubMed Central  Google Scholar 

  89. Boulkadid MK, Touidjine S, Trache D, Belkhiri S (2022) Analytical methods for the assessment of curing kinetics of polyurethane binders for high-energy composites. Crit Rev Anal Chem 52(5):1112–1121. https://doi.org/10.1080/10408347.2020.1863768

    Article  CAS  PubMed  Google Scholar 

  90. Bratasyuk NA, Zuev VV (2020) Cure kinetics of epoxyurethane compositions with amine hardeners of various nature. Russ J Appl Chem 93(10):1504–1517. https://doi.org/10.1134/S1070427220100043

    Article  CAS  Google Scholar 

  91. Chen Y, Wu Y, Geng C, Li Z, Dai G, Cui W (2020) Curing kinetics and the properties of KH560-SiO2/polyethersulfone/bismaleimide-phenolic epoxy resin composite. J Inorg Organomet Polym Mater 30(5):1735–1743. https://doi.org/10.1007/s10904-019-01290-1

    Article  CAS  Google Scholar 

  92. He J, Long G, Ma C, Ma K, Xie Y, Shi Y, Li N, Cheng Z (2020) Effect of triethanolamine on hydration kinetics of cement-fly ash system at elevated curing temperature. ACS Sustain Chem Eng 8(27):10053–10064. https://doi.org/10.1021/acssuschemeng.0c01763

    Article  CAS  Google Scholar 

  93. He X-Y, Wang T, Pan Z-C, Dayo AQ, Wang J, Liu W-B (2021) Curing characteristics, kinetics, and thermal properties of multifunctional fluorene benzoxazines containing hydroxyl groups. J Appl Polym Sci 138(13):50131. https://doi.org/10.1002/app.50131

    Article  CAS  Google Scholar 

  94. Huang C, Sun X, Yuan H, Song C, Meng Y, Li X (2020) Study on the reactivity and kinetics of primary and secondary amines during epoxy curing by NIR spectroscopy combined with multivariate analysis. Vib Spectrosc 106:102993. https://doi.org/10.1016/j.vibspec.2019.102993

    Article  CAS  Google Scholar 

  95. Yi C, Rostron P, Vahdati N, Gunister E, Alfantazi A (2018) Curing kinetics and mechanical properties of epoxy based coatings: the influence of added solvent. Prog Org Coat 124:165–174. https://doi.org/10.1016/j.porgcoat.2018.08.009

    Article  CAS  Google Scholar 

  96. Choi M, Kim MG, Jung KI, Lee TH, Ha M, Hyung W, Jung HW, Noh SM (2020) Reactivity and curing efficiency of isocyanate cross-linkers with imidazole-based blocking agents for low-temperature curing of automotive clearcoats. Coatings. https://doi.org/10.3390/coatings10100974

    Article  Google Scholar 

  97. Estridge CE (2018) The effects of competitive primary and secondary amine reactivity on the structural evolution and properties of an epoxy thermoset resin during cure: a molecular dynamics study. Polymer 141:12–20. https://doi.org/10.1016/j.polymer.2018.02.062

    Article  CAS  Google Scholar 

  98. Janković B (2018) Kinetic and reactivity distribution behaviors during curing process of carbon/epoxy composite with thermoplastic interface coatings (T800/3900-2 prepreg) under the nonisothermal conditions. Polym Compos 39(1):201–220. https://doi.org/10.1002/pc.23920

    Article  CAS  Google Scholar 

  99. Konuray AO, Fernández-Francos X, Ramis X (2018) Curing kinetics and characterization of dual-curable thiol-acrylate-epoxy thermosets with latent reactivity. React Funct Polym 122:60–67. https://doi.org/10.1016/j.reactfunctpolym.2017.11.010

    Article  CAS  Google Scholar 

  100. Wang HS, Lee SH, Bu SH, Kim HD, Song K (2020) Effect of reactivity ratio of photoreactive acrylate monomers on mechanical properties of cured film. Polym Korea 44(3):384–390. https://doi.org/10.7317/pk.2020.44.3.384

    Article  CAS  Google Scholar 

  101. Xue-mei W, Ya-hong W, Zhi-feng H, Jian Y, Lin Y (2010) Preparation, curing reactivity and thermal properties of titanium-doped silicone resins. Chem Res Chin Univ 26(5):851–856

    Google Scholar 

  102. Sun J, Wei W, Xu Y, Qu J, Liu X, Endo T (2015) A curing system of benzoxazine with amine: reactivity, reaction mechanism and material properties. RSC Adv 5(25):19048–19057. https://doi.org/10.1039/C4RA16582A

    Article  CAS  ADS  Google Scholar 

  103. Izadi M, Mardani H, Roghani-Mamaqani H, Salami-Kalajahi M (2021) Modification of carbon nanotube with poly(amidoamine) dendritic structures to prepare a multifunctional hybrid curing component for epoxidized polyurethane and novolac resins. J Polym Res 28(4):140. https://doi.org/10.1007/s10965-021-02495-0

    Article  CAS  Google Scholar 

  104. Müller MT, Zschech C, Gedan-Smolka M, Pech M, Streicher R, Gohs U (2020) Surface modification and edge layer post curing of 3D sheet moulding compounds (SMC). Radiat Phys Chem 173:108872. https://doi.org/10.1016/j.radphyschem.2020.108872

    Article  CAS  Google Scholar 

  105. Auclair N, Kaboorani A, Riedl B, Landry V (2020) Effects of surface modification of cellulose nanocrystals (CNCs) on curing behavior, optical, and thermal properties of soybean oil bio-nanocomposite. J Coat Technol Res 17(1):57–67. https://doi.org/10.1007/s11998-019-00237-y

    Article  CAS  Google Scholar 

  106. Ullah R, Azam A, Aziz T, Farhan HU, Rehman S, Qiao AH (2022) Peacock feathers extract use as template for synthesis of Ag and Au nanoparticles and their biological applications. Waste Biomass Valori 13(1):659–666. https://doi.org/10.1007/s12649-021-01537-4

    Article  CAS  Google Scholar 

  107. Gross S, Jafari H, Tsukrov I, Bayraktar H, Goering J (2016) Curing cycle modification for RTM6 to reduce hydrostatic residual tensile stress in 3D woven composites. J Appl Polym Sci. https://doi.org/10.1002/app.43373

    Article  Google Scholar 

  108. Hyun D-K, Kim D, Hwan Shin J, Lee B-E, Shin D-H, Hoon Kim J (2020) Cure cycle modification for efficient vacuum bag only prepreg process. J Compos Mater 55(8):1039–1051. https://doi.org/10.1177/0021998320963541

    Article  CAS  Google Scholar 

  109. Qian X, Jiang S (2018) Modification of graphene with organic/inorganic silicon-based materials and its reinforcement on the UV-curing polyurethane composite coatings. Polym Compos 39(3):746–754. https://doi.org/10.1002/pc.23992

    Article  CAS  Google Scholar 

  110. Selkälä T, Suopajärvi T, Sirviö JA, Luukkonen T, Kinnunen P, de Carvalho ALCB, Liimatainen H (2020) Surface modification of cured inorganic foams with cationic cellulose nanocrystals and their use as reactive filter media for anionic dye removal. ACS Appl Mater Interfaces 12(24):27745–27757. https://doi.org/10.1021/acsami.0c05927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shi H, Sinke J, Benedictus R (2017) Surface modification of PEEK by UV irradiation for direct co-curing with carbon fibre reinforced epoxy prepregs. Int J Adhes Adhes 73:51–57. https://doi.org/10.1016/j.ijadhadh.2016.07.017

    Article  CAS  Google Scholar 

  112. Zhan Z-M, Tang Y-J, Zhu K-K, Xue S-M, Ji C-H, Tang CY, Xu Z-L (2021) Coupling heat curing and surface modification for the fabrication of high permselectivity polyamide nanofiltration membranes. J Membr Sci 623:119073. https://doi.org/10.1016/j.memsci.2021.119073

    Article  CAS  Google Scholar 

  113. Zolghadr M, Zohuriaan-Mehr MJ, Shakeri A, Salimi A (2019) Epoxy resin modification by reactive bio-based furan derivatives: curing kinetics and mechanical properties. Thermochim Acta 673:147–157. https://doi.org/10.1016/j.tca.2019.01.025

    Article  CAS  Google Scholar 

  114. Balabanovich AI, Hornung A, Merz D, Seifert H (2004) The effect of a curing agent on the thermal degradation of fire retardant brominated epoxy resins. Polym Degrad Stab 85(1):713–723. https://doi.org/10.1016/j.polymdegradstab.2004.02.012

    Article  CAS  Google Scholar 

  115. Baroncini EA, Kumar Yadav S, Palmese GR, Stanzione Iii JF (2016) Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. J Appl Polym Sci. https://doi.org/10.1002/app.44103

    Article  Google Scholar 

  116. Cao Q, Weng Z, Qi Y, Li J, Liu W, Liu C, Zhang S, Wei Z, Chen Y, Jian X (2022) Achieving higher performances without an external curing agent in natural magnolol-based epoxy resin. Chin Chem Lett 33(4):2195–2199. https://doi.org/10.1016/j.cclet.2021.09.025

    Article  CAS  Google Scholar 

  117. Wang H, Liu B, Liu X, Zhang J, Xian M (2008) Synthesis of biobased epoxy and curing agents using rosin and the study of cure reactions. Green Chem 10(11):1190–1196. https://doi.org/10.1039/B803295E

    Article  CAS  Google Scholar 

  118. Haq F, Mehmood S, Haroon M, Kiran M, Waseem K, Aziz T, Farid A (2022) Role of starch based materials as a bio-sorbents for the removal of dyes and heavy metals from wastewater. J Polym Environ 30(5):1730–1748. https://doi.org/10.1007/s10924-021-02337-6

    Article  CAS  Google Scholar 

  119. Tao Y, Fang L, Dai M, Wang C, Sun J, Fang Q (2020) Sustainable alternative to bisphenol A epoxy resin: high-performance recyclable epoxy vitrimers derived from protocatechuic acid. Polym Chem 11(27):4500–4506. https://doi.org/10.1039/D0PY00545B

    Article  CAS  Google Scholar 

  120. Choi E-J, Kim H-I, Kim J-A, Jun SY, Kang SH, Park DJ, Son S-J, Kim Y, Shin OS (2015) The herbal-derived honokiol and magnolol enhances immune response to infection with methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Appl Microbiol Biotechnol. 99(10):4387–4396. https://doi.org/10.1007/s00253-015-6382-y

    Article  CAS  PubMed  Google Scholar 

  121. Lin C-F, Hwang T-L, Al-Suwayeh SA, Huang Y-L, Hung Y-Y, Fang J-Y (2013) Maximizing dermal targeting and minimizing transdermal penetration by magnolol/honokiol methoxylation. Int J Pharm 445(1):153–162. https://doi.org/10.1016/j.ijpharm.2013.01.049

    Article  CAS  PubMed  Google Scholar 

  122. Garrison MD, Savolainen MA, Chafin AP, Baca JE, Bons AM, Harvey BG (2020) Synthesis and characterization of high-performance, bio-based epoxy-amine networks derived from resveratrol. ACS Sustain Chem Eng 8(37):14137–14149. https://doi.org/10.1021/acssuschemeng.0c04816

    Article  CAS  Google Scholar 

  123. Memon H, Liu H, Rashid MA, Chen L, Jiang Q, Zhang L, Wei Y, Liu W, Qiu Y (2020) Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability. Macromolecules 53(2):621–630. https://doi.org/10.1021/acs.macromol.9b02006

    Article  CAS  ADS  Google Scholar 

  124. Anžlovar A, Švab I, Krajnc A, Žagar E (2021) Composites of polystyrene and surface modified cellulose nanocrystals prepared by melt processing. Cellulose 28(12):7813–7827. https://doi.org/10.1007/s10570-021-04040-0

    Article  CAS  Google Scholar 

  125. He L, Zhou J, Wang Y, Ma Z, Chen C (2020) Mechanical and thermal properties of polyether polytriazole elastomers formed by click-chemical reaction curing glycidyl azide polymer. Molecules. https://doi.org/10.3390/molecules25081988

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kocaman S, Soydal U, Ahmetli G (2021) Influence of cotton waste and flame-retardant additives on the mechanical, thermal, and flammability properties of phenolic novolac epoxy composites. Cellulose 28(12):7765–7780. https://doi.org/10.1007/s10570-021-04037-9

    Article  CAS  Google Scholar 

  127. Heidari AR, Parsakhoo A, Nasiri M, Habashi H (2021) Effect of the curing time and combination of corncob (Zea Mays L.) ash with swelling clay on mechanical properties of soil in forest road. J Sustain For 40(4):346–356. https://doi.org/10.1080/10549811.2020.1758150

    Article  Google Scholar 

  128. Kamran-Pirzaman A, Rostamian Y, Babatabar S (2019) Surface improvement effect of silica nanoparticles on epoxy nanocomposites mechanical and physical properties, and curing kinetic. J Polym Res 27(1):13. https://doi.org/10.1007/s10965-019-1918-y

    Article  CAS  Google Scholar 

  129. Voß M, Vallée T (2022) Effects of Curie particle induced accelerated curing on thermo-mechanical performance of 2K structural adhesives—part II: lap shear properties. J Adhes 98(9):1167–1217. https://doi.org/10.1080/00218464.2021.1884551

    Article  CAS  Google Scholar 

  130. Wang D, Zheng Q, Ouyang J, Yu X, Han B (2019) Influences of curing period on mechanical properties of reactive powder concrete incorporating nanoparticles. Mater Res Express 6(2):025023. https://doi.org/10.1088/2053-1591/aaed8b

    Article  CAS  ADS  Google Scholar 

  131. Yang Y, Li L, Zhao J (2019) Mechanical property modeling of photosensitive liquid resin in stereolithography additive manufacturing: bridging degree of cure with tensile strength and hardness. Mater Des 162:418–428. https://doi.org/10.1016/j.matdes.2018.12.009

    Article  CAS  Google Scholar 

  132. Yangthong H, Pichaiyut S, Jumrat S, Wisunthorn S, Nakason C (2019) Mechanical, thermal, morphological, and curing properties of geopolymer filled natural rubber composites. J Appl Polym Sci 136(15):47346. https://doi.org/10.1002/app.47346

    Article  CAS  Google Scholar 

  133. Zhang X, Ge L, Zhang Y, Wang J (2019) Mechanical properties of carbon-fiber RPC and design method of carbon-fiber content under different curing systems. Mater. https://doi.org/10.3390/ma12223759

    Article  Google Scholar 

  134. Dutta A, Ryan ME (1979) Effect of fillers on kinetics of epoxy cure. J Appl Polym Sci 24(3):635–649. https://doi.org/10.1002/app.1979.070240302

    Article  CAS  Google Scholar 

  135. Hutchinson JM, Moradi S (2020) Thermal conductivity and cure kinetics of epoxy-boron nitride composites—a review. Mater. https://doi.org/10.3390/ma13163634

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank their parent institution for providing the necessary facilities to complete the current research. This work was also supported by the Fundamental Research Grant Scheme, Malaysia [FRGS/1/2019/STG05/UNIM/02/2]. Pau Loke Show would like to acknowledge Khalifa University (FSU-2024-001) with project reference number 8474000580.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arshad Farid or Pau Loke Show.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, T., Haq, F., Farid, A. et al. The epoxy resin system: function and role of curing agents. Carbon Lett. 34, 477–494 (2024). https://doi.org/10.1007/s42823-023-00547-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00547-7

Keywords

Navigation