Skip to main content
Log in

Phase and microstructural evolution of Sn particles embedded in amorphous carbon nanofibers and their anode properties in Li-ion batteries

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Phase and microstructural evolution of Sn-Carbon composite nanofibers (NFs) under various heat treatment conditions was clearly demonstrated in this work. Amorphous carbon nanofibers (a-CNFs) that contained metallic Sn nanoparticles were prepared via electrospinning and subsequent calcination under a reducing atmosphere. The sizes of the metallic Sn particles, which were decorated inside and outside of a-CNFs, were precisely manipulated by varying the Sn precursor content and introducing a reinforced quenching step, i.e., controlling the cooling rate after high-temperature processing. Because of the low melting temperature of metallic Sn (231.9 °C), the nucleation and growth rates of the Sn nanoparticles were significantly influenced by the high-temperature processing and cooling condition. In particular, the stresses that originated from volume changes of the Sn nanoparticles during the lithium alloying and dealloying processes were effectively compensated by amorphous carbon containing Sn particles, which led to reduced structural damage. The morphologies of the fibers with incorporated Sn nanoparticles provided efficient permeability to allow the penetration of the electrolyte into the inner fiber structure while maintaining a high-capacity (950 mAh g−1 at 0.5 C-rate) characteristics due to enhanced surface activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008)

    Article  Google Scholar 

  2. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater. 9, 353 (2010)

    Article  Google Scholar 

  3. S.W. Kim, H.W. Lee, P. Muralidharan, D.H. Seo, W.S. Yoon, D.K. Kim, K. Kang, Nano Res. 4, 505 (2011)

    Article  Google Scholar 

  4. T. Song, Y. Jeon, U. Paik, J. Electroceram. 32, 66 (2014)

    Article  Google Scholar 

  5. H. Cheng, Z.G. Lu, J.Q. Deng, C.Y. Chung, K.L. Zhang, Y.Y. Li, Nano Res. 3, 895 (2010)

    Article  Google Scholar 

  6. M.H. Ryu, K.N. Jung, K.H. Shin, K.S. Han, S.K. Yoon, J. Phys. Chem. C 117, 8092 (2013)

    Article  Google Scholar 

  7. A.R. Kamali, D.J. Fray, Rev. Adv. Mater. Sci. 27, 14 (2011)

    Google Scholar 

  8. Y.H. Xu, Y.J. Zhu, Y.H. Liu, C.S. Wang, Adv. Energy Mater. 3, 128 (2013)

    Article  Google Scholar 

  9. K.Y. Kang, D.O. Shin, Y.G. Lee, S.H. Kim, K.M. Kim, J. Electroceram. (2013). doi:10.1007/s10832-013-9882-0

    Google Scholar 

  10. C.M. Park, K.J. Jeon, Chem. Commun. 47, 2122 (2011)

    Article  Google Scholar 

  11. Y.J. Cho, C.H. Kim, H.S. Im, Y. Myung, H.S. Kim, S.H. Back, Y.R. Lim, C.S. Jung, D.M. Jang, J. Park, S.H. Lim, E.H. Cha, K.Y. Bae, M.S. Song, W. Il Cho, Phys. Chem. Chem. Phys. 15, 11691 (2013)

    Article  Google Scholar 

  12. J.R. Gonzalez, F. Nacimiento, R. Alcantara, G.F. Ortiz, J.L. Tirado, Crystengcomm. 15, 9196 (2013)

    Article  Google Scholar 

  13. H.R. Jung, W.J. Lee, J. Electrochem. Soc. 158, A644 (2011)

    Article  Google Scholar 

  14. X.W. Lou, C.M. Li, L.A. Archer, Adv. Mater. 21, 2536 (2009)

    Article  Google Scholar 

  15. C.M. Chen, Q. Zhang, J.Q. Huang, W. Zhang, X.C. Zhao, C.H. Huang, F. Wei, Y.G. Yang, M.Z. Wang, D.S. Su, J. Mater. Chem. 22, 13947 (2012)

    Article  Google Scholar 

  16. M. Alaf, H. Akbulut, J. Power Sources 247, 692 (2014)

    Article  Google Scholar 

  17. Y. Yu, L. Gu, C.B. Zhu, P.A. van Aken, J. Maier, J. Am. Chem. Soc. 131, 15984 (2009)

    Article  Google Scholar 

  18. Y. Yu, L. Gu, C.L. Wang, A. Dhanabalan, P.A. van Aken, J. Maier, Angew. Chem. Int. Ed. 48, 6485 (2009)

    Article  Google Scholar 

  19. R.B. Cervera, N. Suzuki, T. Ohnishi, M. Osada, K. Mitsuishi, T. Kambara, K. Takada, Energy Environ. Sci. 7, 662 (2014)

    Article  Google Scholar 

  20. M.Y. Ge, J.P. Rong, X. Fang, C.W. Zhou, Nano Lett. 12, 2318 (2012)

    Article  Google Scholar 

  21. B. Liu, A. Abouimrane, D.E. Brown, X.F. Zhang, Y. Ren, Z.Z. Fang, K. Amine, J. Mater. Chem A 1, 4376 (2013)

    Article  Google Scholar 

  22. X.L. Wang, M. Feygenson, H.Y. Chen, C.H. Lin, W. Ku, J.M. Bai, M.C. Aronson, T.A. Tyson, W.Q. Han, J. Am. Chem. Soc. 133, 11213 (2011)

    Article  Google Scholar 

  23. J.W. Yoon, H.J. Kim, I.D. Kim, J.H. Lee, Nanotechnology 24, 444005 (2013)

    Article  Google Scholar 

  24. J. Shin, W.H. Ryu, K.S. Park, I.D. Kim, ACS Nano 7, 7330 (2013)

    Article  Google Scholar 

  25. W.H. Ryu, Y.W. Lee, Y.S. Nam, D.Y. Youn, C.B. Park, I.D. Kim, J. Mater. Chem A 2, 5610 (2014)

    Article  Google Scholar 

  26. T. Song, D.H. Lee, M.S. Kwon, J.M. Choi, H. Han, S.G. Doo, H. Chang, W.I. Park, W. Sigmund, H. Kim, U. Paik, J. Mater. Chem. 21, 12619 (2011)

    Article  Google Scholar 

  27. C. Kim, S.H. Kang, H.J. Jeon, J.T. Son, J. Electroceram. 31, 204 (2013)

    Article  Google Scholar 

  28. C. Kim, B.R. Kim, J.T. Son, J. Electroceram. (2014). doi:10.1007/s10832-014-9893-5

    Google Scholar 

  29. S.H. Choi, I.S. Hwang, J.H. Lee, S.G. Oh, I.D. Kim, Chem. Commun. 47, 9315 (2011)

    Article  Google Scholar 

  30. I.D. Kim, E.K. Jeon, S.H. Choi, D.K. Choi, H.L. Tuller, J. Electroceram. 25, 159 (2010)

    Article  Google Scholar 

  31. I.D. Kim, A. Rothschild, B.H. Lee, D.Y. Kim, S.M. Jo, H.L. Tuller, Nano Lett. 6, 2009 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as part of the Global Frontier project (CISS-2012M3A6A6054188) and by the KAIST Institute for the NanoCentury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Doo Kim.

Additional information

Soohyun Kim and Jin-Hoon Choi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Choi, JH., Lim, DS. et al. Phase and microstructural evolution of Sn particles embedded in amorphous carbon nanofibers and their anode properties in Li-ion batteries. J Electroceram 32, 261–268 (2014). https://doi.org/10.1007/s10832-014-9941-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9941-1

Keywords

Navigation