Skip to main content
Log in

Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

One-dimensional ZnMn2O4 nanowires have been prepared and investigated as anode materials in Li rechargeable batteries. The highly crystalline ZnMn2O4 nanowires about 15 nm in width and 500 nm in length showed a high specific capacity of about 650 mAh·g−1 at a current rate of 100 mA·g−1 after 40 cycles. They also exhibited high power capability at elevated current rates, i.e., 450 and 350 mAh·g−1 at current rates of 500 and 1000 mA·g−1, respectively. Formation of Mn3O4 and ZnO phases was identified by ex situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies after the initial discharge-charge cycle, which indicates that the ZnMn2O4 phase was converted to a nanocomposite of Mn3O4 and ZnO phases immediately after the electrochemical conversion reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  2. Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

    Article  CAS  Google Scholar 

  3. Kim, D. K.; Muralidharan, P.; Lee, H. W.; Ruffo, R.; Chan, C. K.; Yang, Y.; Peng, H.; Huggins, R. A.; Cui, Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948–3952.

    Article  CAS  Google Scholar 

  4. Kim, S. W.; Ryu, J.; Park, C. B.; Kang, K. Carbon nanotubeamorphous FePO4 core-shell nanowires as cathode material for Li ion batteries. Chem. Commun. 2010, 46, 7409–7411.

    Article  CAS  Google Scholar 

  5. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 469–499.

    Article  Google Scholar 

  6. Lu, Y.; Wang, Y.; Zou, Y.; Jiao, Z.; Zhao, B.; He, Y.; Wu, M. Macroporous Co3O4 platelets with excellent rate capability as anodes for lithium ion batteries. Electrochem. Commun. 2010, 12, 101–105.

    Article  CAS  Google Scholar 

  7. Ryu, J.; Kim, S. W.; Kang, K.; Park, C. B. Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano 2010, 4, 159–164.

    Article  CAS  Google Scholar 

  8. Fauteux, D.; Koksband, R. Rechargeable lithium battery anodes: Alternative metallic lithium. J. Appl. Electrochem. 1993, 23, 1–10.

    Article  CAS  Google Scholar 

  9. Wang, G. X.; Ahn, J. H.; Yao, J.; Bewlay, S.; Liu, H. K. Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochem. Commun. 2004, 6, 689–692.

    Article  CAS  Google Scholar 

  10. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946.

    Article  CAS  Google Scholar 

  11. Nam, K. T.; Kim, D. W.; Yoo, P. J.; Ching, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.

    Article  CAS  Google Scholar 

  12. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Ki, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anode. Nano Lett. 2009, 9, 3844–3847.

    Article  CAS  Google Scholar 

  13. Chan, C. K.; Peng, H.; Lio, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  CAS  Google Scholar 

  14. Madasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.

    Article  Google Scholar 

  15. Li, F.; Xu, J.; Yu, X.; Chen, L.; Zhu, J.; Yang, Z.; Xin, X. One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sens. Actuators B 2002, 81, 165–169.

    Article  Google Scholar 

  16. Wang, C. C.; Ying, J. Y. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 1999, 11, 3113–3120.

    Article  CAS  Google Scholar 

  17. Wei, B.; Subramanian, V.; Zhu, H. Nanostructured MnO2: Hydrothermal synthesis and electrochemical peroperties as a supercapacitor electrode material. J. Power Sources 2006, 159, 361–364.

    Article  Google Scholar 

  18. Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdary, B. V. R. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2855–2861.

    Article  CAS  Google Scholar 

  19. Alcàntara, R.; Jaraba, M.; Lavela, P.; Tirado, L. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 2002, 14, 2847–2848.

    Article  Google Scholar 

  20. Yang, Y.; Zhao, Y.; Xiao, L.; Zhang, L. Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochem. Commun. 2008, 10, 1117–1120.

    Article  CAS  Google Scholar 

  21. Xiao, L.; Yang, Y.; Yin, J.; Li, Q.; Zhang, Li. Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. J. Power Sources 2009, 194, 1089–1093.

    Article  CAS  Google Scholar 

  22. Lee, H. W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 2010, 10, 3852–3856.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Do Kyung Kim or Kisuk Kang.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SW., Lee, HW., Muralidharan, P. et al. Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res. 4, 505–510 (2011). https://doi.org/10.1007/s12274-011-0106-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0106-0

Keywords

Navigation