Skip to main content
Log in

Si nanotubes array sheathed with SiN/SiOxNy layer as an anode material for lithium ion batteries

  • JECR SPECIAL ISSUE ON ELECTRO-CHEMO-MECHANICS
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Silicon has received high interest as an anode material for lithium ion batteries due to its large theoretical Li storage capacity. However, poor cyclability and low coulombic efficiency of the Si based electrode, caused by the pulverization of the active material and the continuous formation of unstable solid electrolyte interphase (SEI) due to large volume change associated with Li, limits its practical use as an anode material. We have developed a Si nanotube array sheathed with silicon nitride compound to improve the mechanical integrity, resulting in improved electrochemical performance. The SiN/SiOxNy outer shell has excellent mechanical properties, such as a high elastic modulus and hardness. This guides the volume expansion of the Si into the hollow inner space of the tubular structure during charge, which prevents both the pulverization of the Si active material, as well as continuous SEI layer formation by protecting the exposure of fresh Si surface to the electrolyte. Si nanotube array sheathed with silicon nitride electrode compound exhibits improved electrochemical performance, including stable capacity retention and high coulombic efficiencies, over the analogous homogeneous Si nanotube system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, J.R. Dahn, Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137–A140 (2001)

    Article  Google Scholar 

  2. B.A. Boukamp, G.C. Lesh, R.A. Huggins, All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725–729 (1981)

    Article  Google Scholar 

  3. G. Carlotti, L. Doucet, M. Dupeux, Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate. Thin Solid Films 296, 102–105 (1997)

    Article  Google Scholar 

  4. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008)

    Article  Google Scholar 

  5. Z.X. Chen, M. Zhou, Y.L. Cao, X.P. Ai, H.X. Yang, J. Liu, In situ generation of few-layer graphene coatings on SnO2-SiC core-shell nanoparticles for high-performance lithium-ion storage. Adv. Energy Mater. 2, 95–102 (2012)

    Article  Google Scholar 

  6. Z.W. Deng, R. Souda, XPS studies on silicon carbonitride films prepared by sequential implantation of nitrogen and carbon into silicon. Diam. Relat. Mater. 11, 1676–1682 (2002)

    Article  Google Scholar 

  7. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    Article  Google Scholar 

  8. K. Evanoff, J. Benson, M. Schauer, I. Kovalenko, D. Lashmore, W.J. Ready et al., Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. ACS Nano. 6, 9837–9845 (2012)

    Article  Google Scholar 

  9. T.D. Hatchard, J.R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838–A842 (2004)

    Article  Google Scholar 

  10. H.G. Hu, A.H. Carim, Determination of attenuation lengths and electron-escape depths in silicon-nitride thin-films. J. Electrochem. Soc. 140, 3203–3209 (1993)

    Article  Google Scholar 

  11. Y.S. Hu, R. Demir-Cakan, M.M. Titirici, J.O. Muller, R. Schlogl, M. Antonietti et al., Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 47, 1645–1649 (2008)

    Article  Google Scholar 

  12. I. Kim, P.N. Kumta, G.E. Blomgren, Si/TiN nanocomposites—novel anode materials for Li-ion batteries. Electrochem. Solid State Lett. 3, 493–496 (2000)

    Article  Google Scholar 

  13. J. Kong, W.A. Yee, Y. Wei, L. Yang, J.M. Ang, S. Phua et al., Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anode. Nanoscale (2013)

  14. X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L.Q. Zhang et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano. Lett. 11, 3312–3318 (2011)

    Article  Google Scholar 

  15. P. Patel, I.S. Kim, P.N. Kumta, Nanocomposites of silicon/titanium carbide synthesized using high-energy mechanical milling for use as anodes in lithium-ion batteries. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 116, 347–352 (2005)

    Article  Google Scholar 

  16. Q. Si, K. Hanai, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda et al., A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries. J. Power Sources 195, 1720–1725 (2010)

    Article  Google Scholar 

  17. T. Song, H.Y. Cheng, H. Choi, J.H. Lee, H. Han, D.H. Lee et al., Si/Ge double-layered nanotube array as a lithium ion battery anode. ACS Nano. 6, 303–309 (2012)

    Article  Google Scholar 

  18. T. Song, Y. Jeon, M. Samal, H. Han, H. Park, J. Ha et al., A Ge inverse opal with porous walls as an anode for lithium ion batteries. Energy. Environ. Sci. 5, 9028–9033 (2012)

    Article  Google Scholar 

  19. T. Song, D.H. Lee, M.S. Kwon, J.M. Choi, H. Han, S.G. Doo et al., Silicon nanowires with a carbon nanofiber branch as lithium-ion anode material. J. Mater. Chem. 21, 12619–12621 (2011)

    Article  Google Scholar 

  20. T. Song, J.L. Xia, J.H. Lee, D.H. Lee, M.S. Kwon, J.M. Choi et al., Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 10, 1710–1716 (2010)

    Article  Google Scholar 

  21. J.J. Vlassak, W.D. Nix, A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7, 3242–3249 (1992)

    Article  Google Scholar 

  22. W. Wang, P.N. Kumta, Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes. ACS Nano 4, 2233–2241 (2010)

    Article  Google Scholar 

  23. H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012)

    Article  Google Scholar 

  24. W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011)

    Article  Google Scholar 

  25. X.N. Zhang, G.L. Pan, G.R. Li, J.Q. Qu, X.P. Gao, Si-Si(3)N(4) composites as anode materials for lithium ion batteries. Solid State Ionics 178, 1107–1112 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Global Research Laboratory (GRL) Program (K20704000003TA050000310) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (Information and Communication Technologies) and Future Planning, the International Cooperation program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government of Ministry of Trade, Industry & Energy (2011 T100100369), and the World Class University (WCU) Program (R31-10092) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (Information and Communication Technologies) and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ungyu Paik.

Additional information

Taeseup Song and Yeryung Jeon authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, T., Jeon, Y. & Paik, U. Si nanotubes array sheathed with SiN/SiOxNy layer as an anode material for lithium ion batteries. J Electroceram 32, 66–71 (2014). https://doi.org/10.1007/s10832-013-9871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9871-3

Keywords

Navigation