Skip to main content
Log in

Morphological and molecular variation in Ri-transformed root lines are stable in long term cultures of Tylophora indica

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Agrobacterium rhizogenes (Ri) transformed root lines of Tylophora indica were established and characterized on the basis of morphology, insertion and expression of T-DNA genes, DNA profiling and tylophorine content in order to study the stability of Ri-transformed root lines in long term culture. Morphologically Ri-transformed root lines were of four phenotypes—moderately branched thin roots, moderately branched thick roots, highly branched thin roots and highly branched thick roots. On the basis of the presence and expression of different T-DNA genes, the Ri-transformed root lines could be divided into two groups—Group I (13 %): TL+/TR+ and Group II (87 %): TL+/TR. The presence and expression of TR-DNA in addition to TL-DNA did not have any effect on the root morphology and tylophorine content. Tylophorine content varied from 1.01 ± 0.05 to 1.25 ± 0.02 mg gDW−1 in 15 Ri-transformed root lines studied. The transformed root lines stably retained their characteristic phenotype, growth rate, integration and expression of T-DNA genes and tylophorine accumulation potential in long term culture i.e., for 4 years. None of the root lines showed any difference in DNA fingerprinting profiles for each of the 11 OPA primers, showing genetic stability and clonal fidelity of the root lines and root clones in long term culture. Transformed root lines A420 and A426 showing high tylophorine content (1.24 ± 0.03 and 1.22 ± 0.05 mg gDW−1 respectively) even after 4 years of maintenance in vitro on phytohormone unsupplemented medium can be used for scale up studies. This work endorses the utility of T. indica transformed roots for the production of secondary metabolites in bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aird ELH, Hamill JD, Rhodes MJC (1988) Cytogenetic analysis of hairy root cultures from a number of plant species transformed by Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult 15:47–57

    Article  Google Scholar 

  • Alpizar E, Dechamp E, Lapeyre-Montes F, Guilhaumon C, Bertrand B, Jourdan C, Lashermes P, Etienne H (2008) Agrobacterium rhizogenes-transformed roots of Coffee (Coffea arabica): conditions for long-term proliferation and morphological and molecular characterization. Ann Bot 101:929–940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amselem J, Tepfer M (1992) Molecular basis of novel root phenotypes induced by Agrobacterium rhizogenes A4 on cucumber. Plant Mol Biol 19:421–432

    Article  CAS  PubMed  Google Scholar 

  • Aoki T, Matsumoto H, Asako Y, Matsunaga Y, Shimomura K (1997) Variation of alkaloid productivity among several clones of hairy roots and regenerated plants of Atropa belladonna transformed with Agrobacterium rhizogenes 15834. Plant Cell Rep 16:282–286

    CAS  Google Scholar 

  • Baíza AM, Quiroz-Moreno A, Ruíz JA, Loyola-Vargas VM (1999) Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tissue Organ Cult 59:9–17

    Article  Google Scholar 

  • Bandyopadhyay M, Jha S, Tepfer D (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26:599–609

    Article  CAS  PubMed  Google Scholar 

  • Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-terminilinked Ri T-DNA gene integration. Plant Cell Rep 23:148–154

    Article  CAS  PubMed  Google Scholar 

  • Benson EE, Hamill JD (1991) Cryopreservation and post freeze molecular and biosynthetic stability in transformed roots of Beta vulgaris and Nicotiana rustica. Plant Cell Tissue Organ Cult 24:163–172

    Article  CAS  Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux M, Dubreuil AJ (2000) Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rol A, B, C genes only. J Biotechnol 81:151–158

    Article  CAS  PubMed  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2005) Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24:25–35

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2006) Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes. Plant Cell Rep 25:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host-plant root cells. Nat 295:432–434

    Article  CAS  Google Scholar 

  • Chomcznski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Ann Biochem 162:156–159

    Google Scholar 

  • Chopra IC, Chopra RN, Nayar SL (1996) Glossary of Indian Medicinal Plants. National Institute of Science Communication, New Delhi, p 250

    Google Scholar 

  • Chriqui D, Guivarc’h A, Dewitte W, Prinsen E, Van Onckelen H (1996) Rol genes and root initiation and development. Plant Soil 187:47–55

    Article  CAS  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Müller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • De Vries-Uijtewaal E, Gilissen LJW, Fupse E, Sree ramulu K, De Groot B (1988) Characterization of root clones obtained after transformation of monohaploid and diploid potato genotypes with hairy root inducing strains of Agrobacterium. Plant Sci 58:193–202

    Article  Google Scholar 

  • Donaldson GR, Atkinson MR, Murray AW (1968) Inhibition of protein synthesis in Ehrlich ascites-tumor cells by the phenanthrene alkaloids tylophorine, tylocrebrine and cryptopleurine. Biochem Biophys Res Commun 31:104–109

    Article  CAS  PubMed  Google Scholar 

  • Farkya S, Bisaria VS (2008) Exogenous hormones affecting morphology and biosynthetic potential of hairy root line (lyr2i) of Linum album. J Biosci Bioeng 105:140–146

    Article  CAS  PubMed  Google Scholar 

  • Gellert E (1982) The indolizidine alkaloids. J Nat Prod 45:50–73

    Article  CAS  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan C, Shankaranarayan D, Nazimudeen SK, Kameswaran L (1980) Effect of tylophorine, a major alkaloid of Tylophora indica, on immunopathological and inflammatory reactions. Indian J Med Res 71:940–948

    CAS  PubMed  Google Scholar 

  • Guivarc’h A, Boccara M, Prouteau M, Chriqui D (1999) Instability of phenotype and gene expression in long-term culture of carrot hairy root clones. Plant Cell Rep 19:43–50

    Article  Google Scholar 

  • Hänisch ten Cate CH, Loonen AEHM, Ottaviani MR, Ennik L, van Eldik G, Stiekema WJ (1990) Frequent spontaneous deletions of Ri T-DNA in Agrobacterium rhizogenes transformed potato roots and regenerated plants. Plant Mol Biol 14:735–741

    Article  PubMed  Google Scholar 

  • Jouanin L, Guerche D, Pamboukdjian N, Tourneur C, Casse-Delbart F, Tourneur J (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206:387–392

    Article  CAS  Google Scholar 

  • Kirtikar KR, Basu BD (1991) Indian medicinal plants, vol 3. Periodic Experts Book Agency, New Delhi, pp 1631–1632

    Google Scholar 

  • Lipp Joao KH, Brown TA (1994) Long-term stability of root cultures of tomato transformed with Agrobacterium rhizogenes R1601. J Exp Bot 45(274):641–647

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Ayora-Talavera T, Loyola-Vargas VM (1993) Establishment of hairy root cultures of Datura stramonium characterization and stability of tropane alkaloid production during long periods of subculturing. Plant Cell Tissue Organ Cult 33:321–329

    Article  CAS  Google Scholar 

  • Mano Y, Nabeshima S, Matsui C, Ohkawa H (1986) Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric Biol Chem 50:2715–2722

    Article  CAS  Google Scholar 

  • Moyano E, Fornalé S, Palazòn J, Cusidò RM, Bonfill M, Morales C, Piñol MT (1999) Effect of Agrobacterium rhizogenes T-DNA on alkaloid production of Solanaceae plants. Phytochemistry 52:1287–1292

    Article  CAS  Google Scholar 

  • Moyano E, Jouhikainen K, Tammela P, Palazòn J, Cusidò RM, Piñol MT, Teeri TH, Oksman-Caldentey KM (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54(381):203–211

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473

    Article  CAS  Google Scholar 

  • Palazòn J, Cusidò RM, Gonzalo J, Bonfill M, Morales C, Piñol MT (1998) Relation between the amount of rolC gene product and indole alkaloid accumulation in Catharanthus roseus. J Plant Physiol 153:712–718

    Article  Google Scholar 

  • Prinsen E, Bercetche J, Chriqui D, Van Onckelen H (1992) Pisum sativum epicotyls inoculated with Agrobacterium rhizogenes agropine strains harbouring various T-DNA fragments: morphology, histology and endogenous indole-3-acetic acid and indole-3-acetamide content. J Plant Physiol 140:75–83

    Article  CAS  Google Scholar 

  • Roychowdhury D, Ghosh B, Chaubey B, Jha S (2013a) Genetic and morphological stability of six-year-old transgenic Tylophora indica plants. Nucleus 56(2):81–89

    Article  Google Scholar 

  • Roychowdhury D, Majumder A, Jha S (2013b) Agrobacterium rhizogenes-mediated transformation in medicinal plants: prospects and challenges. In: Chandra S et al (eds) Biotechnology for medicinal plants. Springer, Berlin Heidelberg, pp 29–68

    Chapter  Google Scholar 

  • Saraswati S, Kanaujia PK, Kumar S, Kumar R, Alhaider AA (2013) Tylophorine, a phenanthraindolizidine alkaloid isolated from Tylophora indica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2–mediated angiogenesis. Mol Cancer 12:82. doi:10.1186/1476-4598-12-82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sevón N, Dräger B, Hiltunen R, Oksman-Caldentey KM (1997) Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant Cell Rep 16:605–611

    Article  Google Scholar 

  • Sevón N, Hiltunen R, Oksman-Caldentey KM (1998) Somaclonal variation in transformed roots and protoplast-derived hairy root clones of Hyoscyamus muticus. Planta Med 64:37–41

    Article  PubMed  Google Scholar 

  • Sharma S, Rathi N, Kamal B, Pundir D, Kaur B, Arya S (2010) Conservation of biodiversity of highly important medicinal plants of India through tissue culture technology—a review. Agric Biol J N. Am 1:827–833

    Article  Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. J Biol Chem 261:108–121

    CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1987) Introduction to biostatistics. WH Freeman, New York

    Google Scholar 

  • Taneja J, Jaggi M, Wankhede DP, Sinha AK (2010) Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. Plant Cell Rep 29:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Tepfer D (1984) Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  CAS  PubMed  Google Scholar 

  • Wang YM, Wang JB, Luo D, Jia JF (2001) Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi. Cell Res 11(4):279–284

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Jha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10725_2014_5_MOESM1_ESM.tif

Fig. S1 Agarose [1.2 % (w/v)] gel electrophoresis of PCR products with rolA-, rolB-, rolC-, rolD- and TR-DNA specific primers. Lane 1: molecular markers (100 bp plus DNA ladder); Lane 2: positive control (pLJ1, containing TL-DNA and pLJ85 for TR-DNA); Lane 3: negative control (genomic DNA from non-transformed root); Lane 4-13: genomic DNA of Ri-transformed root lines A413, A414, A416, A417, A418, A419, A420, A422, A426, and A428, respectively. Supplementary material 1 (TIFF 9619 kb)

10725_2014_5_MOESM2_ESM.tif

Fig. S2 Expression of rol genes at transcription level in Ri-transformed roots observed by RT-PCR using rolA-, rolB-, rolC- and rolD- specific primers. Lane 1: molecular marker (100 bp DNA ladder, 100 bp DNA ladder for rolA and rolC); Lane 2: positive control (pLJ1, containing TL-DNA); Lane 3: negative control (Genomic DNA of non-transformed root); Lane 4-11: amplified cDNAs of Ri-transformed root lines A414, A416, A417, A418, A419, A420, A422, A426, and A428, respectively. Supplementary material 2 (TIFF 829 kb)

Supplementary material 3 (DOC 42 kb)

Supplementary material 4 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roychowdhury, D., Basu, A. & Jha, S. Morphological and molecular variation in Ri-transformed root lines are stable in long term cultures of Tylophora indica . Plant Growth Regul 75, 443–453 (2015). https://doi.org/10.1007/s10725-014-0005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-0005-y

Keywords

Navigation