Skip to main content
Log in

Evaluation of geographic distribution of high-molecular-weight glutenin subunits (HMW-GS) in wild and cultivated Triticum species

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Variation of high-molecular-weight glutenin subunit (HMW-GS) in 632 wild and cultivated Triticum accessions was investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. A total of 11 alleles of HMW-GS in diploid species, 22 in tetraploid species, and 15 in hexaploid species were detected. Diploid species on Glu-1A locus and tetraploid species Glu-1B locus showed the highest diversity, respectively. Tetraploid species had the highest level of diversity on three Glu-1 loci, followed by hexaploid and diploid, based on Shannon’s information index, Nei’s genetic diversity, and percentage of polymorphic loci. Molecular variance analysis confirmed main variance of HMW-GS within species, regions, and locations, respectively. Variance among species and regions was enhanced gradually with the increase of ploidy. Significant non-random distributions between the phylogenic trees of HMW-GS and the locations of accessions were tested by GenGIS software, indicated that geographic factors played an important role along the different orientations in the spread of Triticum species. We found one original diversified center in diploid what located around Elazig, Malatya, Gaziantep, Urfa, and Kiziltepe in Turkey, and three diversified centers in tetraploid wheat, including Turkey–Armenia–Georgia–Iran, Portugal–Spain, and Ethiopia, respectively, and two diversified adjacent areas between Turkey and Switzerland and around Turkey, Georgia, and Armenia. The original center of diploid species located in southeast Turkey, where the unexpressed 1Ay subunit was mainly distributed in T. urartu, could be one of the candidate regions of polyploidization of Triticum L. The regional distribution of HMW-GS and species also provided geographic evidences for the existence of founder effect on the spread of Triticum species. The present study suggests that integrating genetic diversity with geographic characterization in Triticum could very useful for collection, conservation, and utilization, as well as for research microevolution and domestication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An XL, Li QY, Yan YM, Xiao YH, Hsam SLK, Zeller FJ (2005) Genetic diversity of European spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.) revealed by glutenin subunit variations at the Glu-1 and Glu-3 loci. Euphytica 146:193–201

    Article  CAS  Google Scholar 

  • Avise JC (1998) The history and purview of phylogeography: a personal reflection. Mol Ecol 7:371–379

    Article  Google Scholar 

  • Bahraei S, Saidi A, Alizadeh D (2004) High molecular weight glutenin subunits of current bread wheats grown in Iran. Euphytica 137:173–179

    Article  CAS  Google Scholar 

  • Branlard G, Dardevet M, Amiour N, Igrejas G (2003) Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (Triticum aestivum L.). Genet Resour Crop Evol 50:669–679

    Article  CAS  Google Scholar 

  • Caballero L, Martin LM, Alvarez JB (2001) Allelic variation of the HMW glutenin subunits in Spanish accessions of spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.). Theor Appl Genet 103:124–128

    Article  CAS  Google Scholar 

  • Caballero L, Martin LM, Alvarez JB (2004) Intra- and interpopulation diversity for HMW glutenin subunits in Spanish spelt wheat. Genet Resour Crop Evol 51:175–181

    Article  CAS  Google Scholar 

  • Ciaffi M, Lifiandra D, Porceddu E, Benedettelli S (1993) Storage protein variation in wild emmer wheat (Triticum turgidum ssp. dicoccoides) from Jordan and Turkey. I. Electrophoretic characterization of genotypes. Theor Appl Genet 86:474–480

    Article  CAS  PubMed  Google Scholar 

  • Ciaffi M, Dominici L, Lafiandra D (1998) High molecular weight glutenin subunit variation in wild and cultivated einkorn wheats. Plant Syst Evol 209:123–137

    Article  CAS  Google Scholar 

  • Degaonkar AM, Tamhankar SA, Rao VS (2005) An assessment of cultivated emmer germplasm for gluten proteins. Euphytica 145:49–55

    Article  CAS  Google Scholar 

  • Dvorak J, Pantaleo DT, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    Article  CAS  PubMed  Google Scholar 

  • Hammer K, Filatenko AA, Pistrick K (2011) Taxonomic remarks on Triticum L. and ×Triticosecale Wittm. Genet Resour Crop Evol 58:3–10

    Article  Google Scholar 

  • Hu XG, Wu BH, Bi ZG, Liu DC, Zhang LQ, Yan ZH, Wei YM, Zheng YL (2012) Allelic variation and distribution of HMW glutenin subunit 1Ay in Triticum species. Genet Resour Crop Evol 59:491–497

    Article  CAS  Google Scholar 

  • Igrejas G, Guedes-Pinto H, Carnide V, Branlard G (1999) The high and low molecular weight glutenin subunits and ω-gliadin composition of bread and durum wheats commonly grown in Portugal. Plant Breed 118:297–302

    Article  CAS  Google Scholar 

  • Kidd DM, Lio X (2008) Geophylobuilder 1.0: an ARCGIS extension for creating ‘geophylogenies’. Mol Ecol Res 8:88–91

    Article  Google Scholar 

  • Kidd DM, Ritchie MG (2006) Phylogeographic information systems: putting the geography into phylogeography. J Biogeogr 33:1851–1865

    Article  Google Scholar 

  • Lagudah ES, Flood RG, Halloran GM (1987) Variation in high molecular weight glutenin subunits in landraces of hexaploid wheat from Afghanistan. Euphytica 36:3–9

    Article  CAS  Google Scholar 

  • Lawrence GJ (1986) The high-molecular-weight glutenin subunit composition of Australian wheat cultivars. Aust J Agric Res 37:125–133

    Article  CAS  Google Scholar 

  • Levy AA, Feldman M (1988) Ecogeographical distribution of HMW glutenin alleles in populations of the wild tetraploid wheat Triticum turgidum var. dicoccoides. Theor Appl Genet 75:651–658

    Article  CAS  Google Scholar 

  • Liu Y, Xiong ZY, He YG, Shewry PR, He GY (2007) Genetic diversity of HMW glutenin subunit in Chinese common wheat (Triticum aestivum L.) landraces from Hubei province. Genet Resour Crop Evol 54:865–874

    Article  CAS  Google Scholar 

  • Moragues M, Zarco-Hernández J, Moralejo MA, Royo C (2006) Genetic diversity of glutenin protein subunits composition in durum wheat landraces [Triticum turgidum ssp. turgidum convar. durum (Desf.) Mackey] from the Mediterranean basin. Genet Resour Crop Evol 53:993–1002

    Article  CAS  Google Scholar 

  • Morgunov AI, Rogers WJ, Sayers EJ, Metakovsky EV (1990) The high-molecular-weight glutenin subunit composition of Soviet wheat varieties. Euphytica 51:41–52

    Article  CAS  Google Scholar 

  • Nakamura H (2000) Allelic variation at high-molecular-weight glutenin subunit loci, Glu-A1, Glu-B1 and Glu-D1, in Japanese and Chinese hexaploid wheats. Euphytica 112:187–193

    Article  CAS  Google Scholar 

  • Nakamura H (2001) Genetic diversity of high-molecular-weight glutenin subunit compositions in landraces of hexaploid wheat from Japan. Euphytica 120:227–234

    Article  CAS  Google Scholar 

  • Nevo E, Pagnotta MA, Beiles A, Porceddu E (1995) Wheat storage proteins: glutenin DNA diversity in wild emmer wheat, Triticum dicoccoides, in Israel and Turkey. 3. Environmental correlates and allozymic associations. Theor Appl Genet 91:415–420

    Article  CAS  PubMed  Google Scholar 

  • Ng PKW, Bushuk W (1987) Glutenin of Marquis wheat as a reference for estimating molecular weights of glutenin subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cereal Chem 64:324–327

    CAS  Google Scholar 

  • Oak MD, Tamhankar SA, Rao VS, Bhosale SB (2002) Polymorphism of glutenin proteins in Indian dicoccum wheat (Triticum turgidum ssp. dicoccum) revealed by SDS and Acid-PAGE. J Genet Breed 56:245–250

    CAS  Google Scholar 

  • Özkan H, Willcox G, Graner A, Salamini F, Kilian B (2011) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol 58:11–53

    Article  Google Scholar 

  • Parks DH, Beiko RG (2009) Quantitative visualizations of hierarchically organized data in a geographic context. Geoinformatics, 17th international conference on, August 12–14: 1–6

  • Parks DH, Porter M, Churcher S, Wang S, Blouin C, Whalley J, Brooks S, Beiko RG (2009) GenGIS: a geospatial information system for genomic data. Genome Res 19:1896–1904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Payne PI, Lawrence GJ (1983) Catalogue of alleles for the complex loci, Glu-A1, Glu-B1 and Glu-D1 which coded for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Commun 11:29–35

    Google Scholar 

  • Payne PI, Law CN, Mudd EE (1980) Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet 58:113–120

    Article  CAS  PubMed  Google Scholar 

  • Payne PI, Nightingale MA, Krattiger AF (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric 40:51–65

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pflüger LA, Martin LM, Alvarez JB (2001) Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrank). Theor Appl Genet 102:767–772

    Article  Google Scholar 

  • Piergiovanni AR, Blanco A (1999) Variation of HMW glutenin and γ-gliadin subunits in selected accessions of Triticum dicoccum (Schrank) and T. spelta (L.). Cereal Res Commun 27:205–211

    CAS  Google Scholar 

  • Rodríguez-Quijano M, Vázquez JF, Carrillo JM (1990) Variation of high-molecular-weight glutenin subunits in Spanish landraces of Triticum aestivum ssp. vuglare and ssp. spelta. J Genet Breed 44:121–126

    Google Scholar 

  • Shan XY, Clayshulte SR, Haley SD, Byrne PF (2007) Variation for glutenin and waxy alleles in the US hard winter wheat germplasm. J Cereal Sci 45:199–208

    Article  CAS  Google Scholar 

  • Sultana T, Ghafoor A, Ashraf M (2007) Genetic variability in bread wheat (Triticum aestivum L.) of Pakistan based on polymorphism for high molecular weight glutenin subunits. Genet Resour Crop Evol 54:1159–1165

    Article  Google Scholar 

  • Vallega V, Mello-Sampayo T (1987) Variation of high-molecular-weight glutenin subunits amongst cultivars of Triticum turgidum L. from Portugal. Euphytica 3:755–762

    Article  Google Scholar 

  • Vallega V, Waines JG (1987) High-molecular-weight glutenin subunit variation in Triticum turgidum var. dicoccum. Theor Appl Genet 74:706–710

    Article  CAS  PubMed  Google Scholar 

  • Waines JG, Payne PI (1987) Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theor Appl Genet 74:71–76

    Article  CAS  PubMed  Google Scholar 

  • Wan YF, Yan ZH, Liu KF, Zheng YL, D’Ovidio R, Shewry PR, Halford NG, Wang DW (2005) Comparative analysis of the D genome-encoded high-molecular weight subunits of glutenin. Theor Appl Genet 111:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Xu LL, Li W, Wei YM, Zheng YL (2009) Genetic diversity of HMW glutenin subunits in diploid, tetraploid and hexaploid Triticum species. Genet Resour Crop Evol 56:377–391

    Article  CAS  Google Scholar 

  • Yan Y, Hsam SLK, Yu JZ, Jiang Y, Ohtsuka I, Zeller FJ (2003) HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors. Theor Appl Genet 107:1321–1330

    Article  CAS  PubMed  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

  • Zhang LY, Ravel C, Bernard M, Balfourier F, Leroy P, Feuillet C, Sourdille P (2006) Transferable bread wheat EST–SSRs can be useful for phylogenetic studies among the Triticeae species. Theor Appl Genet 113:407–441

    Article  CAS  PubMed  Google Scholar 

  • Zimmer EA, Wen J (2012) Using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 65:774–785

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 program 2006AA10Z179 and 2006AA10Z1F8), the Key Technologies R&D Program (2006BAD01A02-23), and the Key Project of National Natural Science Foundation of China (31230053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or You-Liang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Wei, YM., Xu, LL. et al. Evaluation of geographic distribution of high-molecular-weight glutenin subunits (HMW-GS) in wild and cultivated Triticum species. Genet Resour Crop Evol 61, 1105–1119 (2014). https://doi.org/10.1007/s10722-014-0094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0094-5

Keywords

Navigation