Skip to main content
Log in

The laws of thermodynamics and information for emergent cosmology

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The aim here is to provide a set of equations for cosmology in terms of information and thermodynamical parameters. The method we implement in order to describe the universe is a development of Padmanabhan’s approach which is based on the fact that emergence of the cosmic space is provided by the evolution of the cosmic time. In this line we obtain the Friedmann equation or its equivalent the conservation law in terms of information by the implementation of Landauer’s principle or in other words the information loss/production rate. Hence, a self consistent description of the universe is provided in terms of thermodynamical parameters. This is due to the fact that in this work the role of information which is the most important actor of all times, has stepped in to cosmology. We provide a picture of the emergent cosmology merely based on the information theory. In addition, we introduce a novel entropy on the horizon, which can also generalize Bekenstein–Hawking entropy for the asymptotic holographic principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The cosmic space volume is an evolutionary volume in respect to the cosmic time. This statement works only if the CMB is observed homogeneous and isotropic. As long as the CMB is proved to be homogeneous and isotropic for the geodesic observer, the respected time is the cosmic time. Note that the evolution of the cosmic space regarding the cosmic time may be subject to authors.

  2. For simplicity, the natural units \(k_{{B}}=c=\hbar =1\) are used throughout this section.

References

  1. Sakharov, A.D.: Sov. Phys. Dokl. 12, 1040 (1968) [Sakharov, A.D.: Gen. Relativ. Gravit. 32, 365 (2000)]

  2. Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995). arXiv:gr-qc/9504004

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Unruh, W.G.: Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  4. Verlinde, E.: J. High Energy Phys. 4, 029 (2011).arXiv:1001.0785

    Article  MathSciNet  ADS  Google Scholar 

  5. Padmanabhan, T.: Mod. Phys. Lett. 25, 1129 (2010).arXiv:0912.3165

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Padmanabhan, T.: arXiv:1206.4916

  7. Padmanabhan, T.: Res. Astron. Astrophys. 12, 891 (2012).arXiv:1207.0505

    Article  ADS  Google Scholar 

  8. Padmanabhan, T.: Class. Quantum Gravity 21, 4485 (2004). arXiv:gr-qc/0308070

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Sheykhi, A.: Phys. Rev. D 87, 061501 (2013).arXiv:1304.3054

    Article  ADS  Google Scholar 

  10. Bak, D., Rey, S.J.: Class. Quantum Gravity 17, L83 (2000). arXiv:hep-th/9902173

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Cai, R.G., Kim, S.P.: J. High Energy Phys. 02, 050 (2005). arXiv:hep-th/0501055

    Article  MathSciNet  ADS  Google Scholar 

  12. Yang, K., Liu, Y.X., Wang, Y.Q.: Phys. Rev. D 86, 104013 (2012). arXiv:1207.3515 [hep-th]

  13. Eune, M., Kim, W.: Phys. Rev. D 88, 067303 (2013).arXiv:1305.6688v2

    Article  ADS  Google Scholar 

  14. Hashemi, M., Jalalzadeh, S., Vasheghani Farahani, S.: Gen. Relativ. Gravit. 47, 53 (2015). arXiv:1308.2383 [gr-qc]

  15. Hu, Y.P.: Phys. Lett. B 701, 269 (2011).arXiv:1007.4044v3

    Article  MathSciNet  ADS  Google Scholar 

  16. Farag Ali, A.: Phys. Lett. B 732, 335 (2014).arXiv:1310.1790

    Article  ADS  Google Scholar 

  17. Chang-Young, E., Lee, D.: J. High Energy Phys. 04, 125 (2014).arXiv:1309.3084

    Article  ADS  Google Scholar 

  18. Ai, W.Y., Chen, H., Hu, X.R., Deng, J.B.: Gen. Relativ. Gravit. 46, 1680 (2014).arXiv:1309.1857

    Article  ADS  Google Scholar 

  19. Heydarzade, Y., Hadi, H., Darabi, F., Sheykhi, A.: arXiv:1506.0238

  20. Cai, R.G.: J. High Energy Phys. 11, 016 (2012).arXiv:1207.0622

    Article  ADS  Google Scholar 

  21. Yuan, F.F., Huang, Y.C.: arXiv:1304.7949

  22. Ai, W.Y., Chen, H., Hu, X.R., Deng, J.B.: Phys. Rev. D 88, 084019 (2013).arXiv:1307.2480

    Article  ADS  Google Scholar 

  23. Yang, K., Liu, Y.X., Wang, Y.Q.: Phys. Rev. D 86, 104013 (2012).arXiv:1207.3515

    Article  ADS  Google Scholar 

  24. Tu, F.Q., Chen, Y.X.: J. Cosmo. Astron. Phys. 05, 024 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  25. Ling, Y., Pan, W.J.: Phys. Rev. D 88, 043518 (2013).arXiv:1304.0220

    Article  ADS  Google Scholar 

  26. Sheykhi, A., Dehghani, M.H., Hosseini, S.E.: Phys. Lett. B 726, 23 (2013)

    Article  ADS  Google Scholar 

  27. Padmanabhan, T.: Phys. Rev. D 81, 124040 (2010).arXiv:1003.5665

    Article  ADS  Google Scholar 

  28. Padmanabhan, T.: Phys. Rev. D 83, 044048 (2011).arXiv:1012.0119

    Article  ADS  Google Scholar 

  29. Padmanabhan, T.: Ret. Prog. Phys. 73, 046901 (2010).arXiv:0911.5004 [gr-qc]

    Article  ADS  Google Scholar 

  30. Dowker, F.: arXiv:1405.3492 [gr-qc]

  31. Padmanabhan, T.: Int. J. Mod. Phys. D 17, 591 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Szilard, L.: Zeitschrift fur Physik 53, 840 (1929)

    Article  MATH  ADS  Google Scholar 

  33. Leff, H., Rex, A.F.: Maxwell’s Daemon 2: Entropy, Classical and Quantum Information, Computing, 2nd edn. Institute of Physics, London (2003)

    Google Scholar 

  34. Cpek, V., Sheehan, D.P.: Challenges to the Second Law of Thermodynamics: Theory and Experiment. Springer, Netherlands (2005)

    Book  Google Scholar 

  35. Landauer, R.: IBM J. Res. Dev. 5, 183 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  36. Leff, H.S., Rex, A.: Maxwell’s Demon: Entropy, Information, Computing, vol. 148. Princeton Press, Princeton, NJ (2003)

    Google Scholar 

  37. Sagawa, T.: Thermodynamics of Information Processing in Small Systems. Springer, New York (2012)

    Google Scholar 

  38. Duncan, T.L., Semura, J.S.: Found. Phys. 37, 1767 (2007). arXiv:hep-th/0703235

  39. Duncan, T.L., Semura, J.S.: Entropy 06, 21 (2004). arXiv:hep-th/0501014

  40. Misner, C.W., Sharp, D.H.: Phys. Rev. 136, B571 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  41. Padmanabhan, T.: Gen. Relativ. Gravit. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]

  42. Bousso, R.: arXiv:hep-th/0205177

  43. Hayward, S.A.: Class. Quantum Gravity 15, 3147 (1998). arXiv:gr-qc/9710089

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Hayward, S.A., Di Criscienzo, R., Vanzo, L., Nadalini, M., Zerbini, S.: Class. Quantum Gravity 26, 062001 (2009).arXiv:0806.0014

    Article  ADS  Google Scholar 

  45. Helou, A.: arXiv:1502.04235

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jalalzadeh.

Appendix

Appendix

It is worth investigating other proposals fron f extracted from Eq. (4) in terms of the Landauer entropy (20). In this line after checking Landauer entropy for other proposals it will be seen that the chosen proposal of the present study (10) is indeed reasonable. We hope that the last degree of freedom in the dynamical emergent equation [choosing f in Eq. (4)] eliminates H from Eq. (20). Note that the existence of H in Eq. (20) puts us in a weak position for issuing an informational interpretation for the emergent cosmological Eqs. (21) and (22).

Equation (1) was proposed by Padmanabhan. He assumed the hubble horizon (\(R_{\mathrm{H}}=H^{-1}\)) to be the boundary of the universe. Therefore, the area and volume of the universe would be expressed as

$$\begin{aligned} A_H=4\pi H^{-2},\quad V_{\mathrm{H}}={4\pi \over 3} H^{-3}. \end{aligned}$$
(32)

The temperature corresponding to the horizon is assumed \(T_H=H/2\pi \). By calculating \(N_{\texttt {sur}}\) and \(N_{\texttt {bulk}}\) as defined in the Eq. (2) and its preceding paragraph, we have

$$\begin{aligned} N_{\texttt {sur}}={4\pi \over {L^2_P H^2}}, \quad N_{\texttt {bulk}}=-{16\pi ^2 \over {3 H^4}} (\rho +3\mathrm{p}). \end{aligned}$$
(33)

Now by substituting these parameters into the Landauer entropy (20) we have

$$\begin{aligned} \dot{S}={32\pi ^3 \over {3 H^5}} L^2_P(\rho +3\mathrm{p}) \, (\rho +\mathrm{p}). \end{aligned}$$
(34)

Unluckily H remains in the Equation disabling a robust thermodynamical interpretation of Landauer–Padmanabhan entropy.

Shyekhi’s Proposal is Eq. (5). He generalized the boundary of the universe to the apparent horizon and provided a general expression for the curvature of the universe. The area and volume for the universe is as of Shyekhi’s Proposal

$$\begin{aligned} A_A=4\pi R_{\mathrm{A}}^2,\quad V_{\mathrm{A}}={4\pi \over 3} R_{\mathrm{A}}^3. \end{aligned}$$
(35)

The Kodama–Hayward temperature of the apparent horizon is assumed to be in the form \(T=1/2\pi R_{\mathrm{A}}\). Similar to Landauer–Padmanabhan entropy we should calculate \(N_{\texttt {sur}}\) and \(N_{\texttt {bulk}}\) as defined in Eq. (2) and its preceding paragraph

$$\begin{aligned} N_{\texttt {sur}}={4\pi R_{\mathrm{A}}^2\over {L^2_P}}, \quad N_{\texttt {bulk}}=-{16\pi ^2 \over 3}R_{\mathrm{A}}^4 (\rho +3\mathrm{p}), \end{aligned}$$
(36)

resulting in

$$\begin{aligned} \dot{S}={f-3\textit{HV}_{\mathrm{A}} \over T_{\mathrm{A}}} \, (\rho +\mathrm{p})={32\pi ^3 \over 3} \hbox {R}_{\mathrm{A}}^6 \hbox {HL}^2_\mathrm{P}(\rho +3\mathrm{p}) \, (\rho +\mathrm{p}). \end{aligned}$$
(37)

It is not surprising that H still exists. We know that by substituting \(R_{\mathrm{A}}=H^{-1}\) in Eq. (37) one could reach Eq. (34). The informational interpretation of this entropy is unclear.

Another extension of Padmanabhan’s approach hs been provided by Yang et al. [12]. Their proposal [Eq. (7)] calculates the Raychaudhuri’s equation for an arbitrary dimension. For simplicity we focus on the 3 + 1 dimension universe. Their assumptions for the horizon radius and its temperature is similar to Padmanabhan’s approach, see equations (32 and 33). In 3 + 1 dimensions, the auxiliary parameters \(\alpha \) and K [12] are expressed by

$$\begin{aligned} \alpha =1, \quad K={3\Omega _3 \over L^2_P}={4\pi \over L^2_P}. \end{aligned}$$
(38)

Another auxilary parameter \(\tilde{\alpha }\) is the new degree of freedom in the Yang’s proposal which meets Padmanabhan’s proposal if\(\tilde{\alpha }\) equals zero. Note that for consistency [see Eq. (4)] we have the constant \(L_p^2\) is taken to the RHS of Eq. (7)

$$\begin{aligned} f= & {} L^2_{P}\frac{{\Delta N}/{\alpha }+\tilde{\alpha } K\left( {N_{\texttt {sur}}}/{\alpha }\right) ^{1+\frac{2}{1-n}}}{1+2\tilde{\alpha } K\left( {N_{\text {sur}}}/{\alpha }\right) ^{\frac{2}{1-n}}}\nonumber \\= & {} \frac{L^2_{P}{\Delta N}+4\pi \tilde{\alpha }}{1+{8\pi \tilde{\alpha } \over L^2_p N_{\texttt {sur}}}} =\frac{f_{\texttt {Padmanabhan}}+4\pi \tilde{\alpha }}{1+{8\pi \tilde{\alpha } \over L^2_p N_{\texttt {sur}}}}, \end{aligned}$$
(39)

where \(f_{\texttt {Padmanabhan}}\) is Padmanbhan’s proposal (1). Yang’s proposal is reduced to the Padmanabhan’s suggestion if \(\tilde{\alpha }=0\). By substituting Eqs. (32), (33) and (38) into the Eq. (39) we have

$$\begin{aligned} \dot{S}={2\pi \over { H(1+2\tilde{\alpha } H^2)}}(\rho +\mathrm{p}) \left[ {16\pi ^2 \over {3 \hbox {H}^4}} \hbox {L}^2_\mathrm{P}(\rho +3\mathrm{p})+4\pi \tilde{\alpha } \right] . \end{aligned}$$
(40)

Equation 40 is not directly based on only thermodynamic parameters.

Eune et al. propsed another propsal by calculating the volume differently. In brief their proposal is described as

$$\begin{aligned} f=f_k(t){H^{-1}\over R_{\mathrm{A}}}\,f_{\texttt {Sheykhi}}, \end{aligned}$$
(41)

where \(f_k\) is defined by Eq. (9). Except the definition of volume in their approach (and their proposal) other assumptions are the same as of sheykhi’s proposal. The entropy would be

$$\begin{aligned} \dot{S}=\left( {2\pi \over H} \left\{ \frac{V_{\mathrm{A}}}{V_k}\left[ \frac{\frac{\dot{R}_AH^{-1}}{R_A}-\frac{R_A}{H^{-1}}\frac{V_k}{V_{\mathrm{A}}}+1}{\frac{\dot{R}_AH^{-1}}{R_A}+\frac{R_A}{H^{-1}}\frac{V_k}{V_{\mathrm{A}}}-1}\right] \right\} f_{\texttt {Sheykhi}} -6\pi \textit{HR}_{\mathrm{A}}V_{\mathrm{k}}\right) (\rho +\mathrm{p}).\nonumber \\ \end{aligned}$$
(42)

Note that in this appendix the compatibility check between the Landauer entropy proposed in this work [Eq. (20)] with other dynamical emergent equations (Eq. 4) has been carried out. However, other potential proposals for Landauer entropy may provide an expression based on only thermodynamic parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M., Jalalzadeh, S. & Vasheghani Farahani, S. The laws of thermodynamics and information for emergent cosmology. Gen Relativ Gravit 47, 139 (2015). https://doi.org/10.1007/s10714-015-1971-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1971-8

Keywords

Navigation