Skip to main content
Log in

Generalized entropies and the expansion law of the universe

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We suggest that using the first law of thermodynamics is a convenient method to obtain a correct form of the expansion law of the universe (Padmanabhan, arXiv:1206.4916v1 [hep-th]). We will, then, use this idea to obtain the expansion law for a Kodama observer. By using the expansion law for a Kodama observer, we can obtain the dynamic equation of the FRW universe for deformed Horava–Lifshitz gravity. The use of the first law of thermodynamics also leads to a new approach for obtaining the Friedmann equations for f(R) and scalar tensor gravities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Padmanabhan, T.: Emergence and expansion of cosmic space as due to the quest for holographic equipartition, arXiv:1206.4916v1 [hep-th]

  2. Jacobson, T.: Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995). arXiv: [ gr-qc/9504004]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Cai, R.-G., Kim, S.P.: First law of thermodynamics and Friedmann equatins of Friedmann–Robertson–Walkeruniverse. JHEP 02, 050 (2005). arXiv: [ hep-th/0501055]

    Article  MathSciNet  ADS  Google Scholar 

  4. Sheykhi, A.: Friedmann equations from emergence of cosmic space. Phys. Rev. D 87, 061501 (R) (2013). arXiv:1304.3054 [gr-qc]

    Article  ADS  Google Scholar 

  5. Horava, P.: Spectral dimension of the universe in quantum gravity at a Lifshitz point. Phys. Rev. Lett. 102, 161301 (2009). arXiv:0902.3657 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  6. Horava, P.: On asymtotic darkness in the Horava–Lifshitz Gravity. Phys. Rev. D 79, 084008 (2009). arXiv:1110.0036 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  7. Akbar, M., Cai, R.-G.: Thermodynamic behavior of field equations for f(R) gravity. Phys. Lett. B 648, 243–248 (2007). arXiv: [ gr-qc/0612089]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  9. Wald, R.M.: General Relativity. The university of chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  10. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Field. Butterworth-Heinmann, Beijing (1999)

    Google Scholar 

  11. Misner, C.W., Sharp, D.H.: Spherical gravitational collapse with energy transport by radiative diffusion. Phys. Rev. D 136B, 571 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  12. Cai, R.-G., Cao, L.-M., Hu, Y.-P., Ohta, N.: Generalized Misner-Sharp energy in f(R) gravity. Phys. Rev. D 80, 104016 (2009). arXiv:0910.2387 [hep-th]

    Article  ADS  Google Scholar 

  13. Hayward, S.A.: Gravitational energy in spherical symmetry. Phys. Rev. D 53, 1938–1949 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  14. Hayward, S.A.: Quasilocal gravitational energy. Phys. Rev. D 49, 831 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  15. Cai, R.-G., Cao, L.-M., Ya-Peng, H.: Hawking radiation of apparent horizon in a FRW universe. Class. Quantum Gravity 26, 155018 (2009). arXiv:0809.1554 [astro-ph.CO]

    Article  ADS  Google Scholar 

  16. Cao, Q.-J., Chen, Y.-X., Shao, K.-N.: Clausius relation and Friedmann equation in FRW universe model. JCAP 05, 030 (2010). arXiv:1001.2597 [hep-th]

    Article  ADS  Google Scholar 

  17. Padmanabhan, T.: Emergent perspective of gravity and dark energy, arXiv:1207.0505 [astro-ph.CO]

  18. Komar, A.: Covariant conservation law in general relativity. Phys. Rev. D 113, 934 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Padmanabhan, T.: Phys. Rev. D 81, 124040 (2010). arXiv:1003.5665 [hep-th]

    Article  ADS  Google Scholar 

  20. Kodama, H.: Progr. Theor. Phys. 63, 1217 (1980)

    Article  ADS  Google Scholar 

  21. Hayward, S.A.: Unified first law of black-hole dynamics and relativistic thermodynamics. Class. Quant. Grav 15, 3147–3162 (1998). arXiv: [ gr-qc/9710089]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Cai, R.-G., Cao, L.-M.: Unified first law and thermodynamics of apparent horizon FRW universe. Phys. Rev. D 75, 064008 (2007). arXiv: [ gr-qc/0611071]

    Article  MathSciNet  ADS  Google Scholar 

  23. Frolov, A.V., Kofman, L.: Inflation and de Sitter Thermodynamics. JCAP 0305, 009 (2003). arXiv: [ hep-th/0212327]

  24. Danielsson Ulf H.: Transplanckian energy production and slow roll inflation. Phys. Rev. D71, 023516 (2005). arXiv: [ hep-th/0411172]

  25. Bousso, R.: Cosmology and the S-matrix. Phys. Rev. D71, 064024 (2005). arXiv: [ hep-th/0412197]

  26. Calcagni, G.: de Sitter thermodynamics and the braneworld. JHEP 0509, 060 (2005). arXiv: [ hep-th/0507125]

  27. Akbar, M., Cai, R.-G.: Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe. Phys. Rev. D 75, 084003 (2007). arXiv: [ hep-th/0609128]

    Article  ADS  Google Scholar 

  28. Chan, Y.-X., Li, J.-L., Wang, Y.-Q.: Thermodynamics for Kodama observer in general spherically symmetric spactime, arXiv:1008.3215 [hep-th]

  29. Hashemi, M., Jalalzadeh, S., Vasheghani Farahani, S.: Hawking temperature and the emergent cosmic space, arXiv:1308.2383 [gr-qc]

  30. Cai, R.-G., Cao, L.-M., Ohta, N.: Topological black holesin Horava–Lifshitz gravity. Phys. Rev. D 80, 024003 (2009). arXiv:0904.3670 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  31. Castillo, A., Larranga, A.: Entropy for black holes in the deformed Horava–Lifshitz gravity. EJTP 8, 25 (2011). arXiv:0906.4380 [gr-qc]

    Google Scholar 

  32. Cai, R.-G.: Emergence of space and spacetime dynamics of Friedmann–Robertson–Walker. JHEP 11, 016 (2012). arXiv:1207.0622 [gr-qc]

  33. Ling, Y., Pan, W.-J.: Note on the emergence of cosmic space in modified gravities. Phys. Rev. D 88, 043518 (2013). arXiv:1304.0220 [hep-th]

    Article  ADS  Google Scholar 

  34. Akbar, M., Cai, R.-G.: Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and the first law of thermodynamics B 635, 7–10 (2006). hep-th/0602156

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Mirza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezaki, F.L., Mirza, B. Generalized entropies and the expansion law of the universe. Gen Relativ Gravit 47, 67 (2015). https://doi.org/10.1007/s10714-015-1910-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1910-8

Keywords

Navigation