Skip to main content

Advertisement

Log in

On High-Frequency Topography-Implied Gravity Signals for a Height System Unification Using GOCE-Based Global Geopotential Models

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

National height reference systems have conventionally been linked to the local mean sea level, observed at individual tide gauges. Due to variations in the sea surface topography, the reference levels of these systems are inconsistent, causing height datum offsets of up to ±1–2 m. For the unification of height systems, a satellite-based method is presented that utilizes global geopotential models (GGMs) derived from ESA’s satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE). In this context, height datum offsets are estimated within a least squares adjustment by comparing the GGM information with measured GNSS/leveling data. While the GNSS/leveling data comprises the full spectral information, GOCE GGMs are restricted to long wavelengths according to the maximum degree of their spherical harmonic representation. To provide accurate height datum offsets, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. Therefore, a combination of the GOCE information with the high-resolution Earth Gravitational Model 2008 (EGM2008) is performed. The main contribution of this paper is to analyze the benefit, when high-frequency topography-implied gravity signals are additionally used to reduce the remaining omission error of EGM2008. In terms of a spectral extension, a new method is proposed that does not rely on an assumed spectral consistency of topographic heights and implied gravity as is the case for the residual terrain modeling (RTM) technique. In the first step of this new approach, gravity forward modeling based on tesseroid mass bodies is performed according to the Rock–Water–Ice (RWI) approach. In a second step, the resulting full spectral RWI-based topographic potential values are reduced by the effect of the topographic gravity field model RWI_TOPO_2015, thus, removing the long to medium wavelengths. By using the latest GOCE GGMs, the impact of topography-implied gravity signals on the estimation of height datum offsets is analyzed in detail for representative GNSS/leveling data sets in Germany, Austria, and Brazil. Besides considerable changes in the estimated offset of up to 3 cm, the conducted analyses show that significant improvements of 30–40% can be achieved in terms of a reduced standard deviation and range of the least squares adjusted residuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amjadiparvar B, Rangelova E, Sideris MG (2016) The GBVP approach for vertical datum unification: recent results in North America. J Geod 90(1):45–63. doi:10.1007/s00190-015-0855-8

    Article  Google Scholar 

  • Amjadiparvar B, Rangelova E, Sideris MG, Véronneau M (2013) North American height datums and their offsets: the effect of GOCE omission errors and systematic levelling effects. J Appl Geod 7(1):39–50. doi:10.1515/jag-2012-0034

    Google Scholar 

  • Barzaghi R, Carrion D, Reguzzoni M, Venuti G (2016) A feasibility study on the unification of the Italian height systems using GNSS-Leveling data and global satellite gravity models. In: Rizos C, Willis P (eds) IAG 150 years, International Association of Geodesy Symposia, vol 143. Springer, Berlin, pp 281–288. doi:10.1007/1345_2015_35

    Google Scholar 

  • Blackman RB, Tukey JW (1958) The measurement of power spectra from the point of view of communications engineering - Part I. Bell Syst Tech J 37(1):185–282. doi:10.1002/j.1538-7305.1958.tb03874.x

    Article  Google Scholar 

  • Blewitt G, Altamimi Z, Davis J, Gross R, Kuo CY, Lemoine FG, Moore AW, Neilan RE, Plag HP, Rothacher M, Shum CK, Sideris MG, Schöne T, Tregoning P, Zerbini S (2010) Geodetic observations and global reference frame contributions to understanding sea-level rise and variability. In: Church JA, Woodworth PL, Aarup T, Wilson WS (eds) Understanding sea-level rise and variability. Wiley, Hoboken, pp 256–284. doi:10.1002/9781444323276.ch9

    Chapter  Google Scholar 

  • Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh WD (2014) EGM_TIM_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 41(22):8089–8099. doi:10.1002/2014GL061904

    Article  Google Scholar 

  • Bruinsma SL, Förste C, Abrikosov O, Lemoine JM, Marty JC, Mulet S, Rio MH, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41(21):7508–7514. doi:10.1002/2014GL062045

    Article  Google Scholar 

  • Colombo OL (1980) A world vertical network. Report 296, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, USA

  • Ekman M (1989) Impacts of geodynamic phenomena on systems for height and gravity. Bull Géod 63(3):281–296. doi:10.1007/BF02520477

    Article  Google Scholar 

  • ESA (1999) The four candidate Earth explorer core missions – Gravity field and steady-state ocean circulation. In: Battrick B (ed) Reports for mission selection, ESA Special Publication, vol 1233(1). ESA Publications Division, ESTEC, Noordwijk, The Netherlands

  • Ferreira VG, de Freitas SRC (2011) Geopotential numbers from GPS satellite surveying and disturbing potential model: a case study of Parana. Brazil. J Appl Geod 5(3–4):155–162. doi:10.1515/JAG.2011.016

    Google Scholar 

  • Ferreira VG, de Freitas SRC, Heck B (2016) Analysis of the discrepancy between the Brazilian vertical reference frame and GOCE-based geopotential models. In: Rizos C, Willis P (eds) IAG 150 years, International Association of Geodesy Symposia, vol 143. Springer, Berlin, pp 227–232. doi:10.1007/1345_2015_20

    Google Scholar 

  • Forsberg R, Tscherning CC (1997) Topographic effects in gravity field modelling for BVP. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, Lecture Notes in Earth Sciences, vol 65. Springer, Berlin, pp 239–272. doi:10.1007/BFb0011707

    Chapter  Google Scholar 

  • Gatti A, Reguzzoni M, Venuti G (2013) The height datum problem and the role of satellite gravity models. J Geod 87(1):15–22. doi:10.1007/s00190-012-0574-3

    Article  Google Scholar 

  • Gerlach C, Fecher T (2012) Approximations of the GOCE error variance-covariance matrix for least-squares estimation of height datum offsets. J Geod Sci 2(4):247–256. doi:10.2478/v10156-011-0049-0

    Google Scholar 

  • Gerlach C, Rummel R (2013) Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach. J Geod 87(1):57–67. doi:10.1007/s00190-012-0579-y

    Article  Google Scholar 

  • Gomez ME, Pereira RAD, Ferreira VG, Cogliano DD, Luz RT, de Freitas SRC, Farias C, Perdomo R, Tocho C, Lauria E, Cimbaro S (2016) Analysis of the discrepancies between the vertical reference frames of Argentina and Brazil. In: Rizos C, Willis P (eds) IAG 150 years, International Association of Geodesy Symposia, vol 143. Springer, Berlin, pp 289–295. doi:10.1007/1345_2015_75

    Google Scholar 

  • Grombein T, Luo X, Seitz K, Heck B (2014) A wavelet-based assessment of topographic-isostatic reductions for GOCE gravity gradients. Surv Geophys 35(4):959–982. doi:10.1007/s10712-014-9283-1

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2013) Optimized formulas for the gravitational field of a tesseroid. J Geod 87(7):645–660. doi:10.1007/s00190-013-0636-1

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2016a) The Rock-Water-Ice topographic gravity field model RWI_TOPO_2015 and its comparison to a conventional rock-equivalent version. Surv Geophys 37(5):937–976. doi:10.1007/s10712-016-9376-0

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2016b) Height system unification based on the fixed GBVP approach. In: Rizos C, Willis P (eds) IAG 150 years, International Association of Geodesy Symposia, vol 143. Springer, Berlin, pp 305–311. doi:10.1007/1345_2015_104

    Google Scholar 

  • Gruber T, Gerlach C, Haagmans R (2012) Intercontinental height datum connection with GOCE and GPS-levelling data. J Geod Sci 2(4):270–280. doi:10.2478/v10156-012-0001-y

    Google Scholar 

  • Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85(11):845–860. doi:10.1007/s00190-011-0486-7

    Article  Google Scholar 

  • Haagmans RHN, van Gelderen M (1991) Error variances-covariances of GEM-T1: their characteristics and implications in geoid computation. J Geophys Res 96(B12):20011–20022. doi:10.1029/91JB01971

    Article  Google Scholar 

  • Heck B (1981) Der Einfluß einzelner Beobachtungen auf das Ergebnis einer Ausgleichung und die Suche nach Ausreißern in den Beobachtungen. Allg Vermes Nachr 88(1981):17–34

    Google Scholar 

  • Heck B (1990) An evaluation of some systematic error sources affecting terrestrial gravity anomalies. Bull Géod 64(1):88–108. doi:10.1007/BF02530617

    Article  Google Scholar 

  • Heck B (2004) Problems in the definition of vertical reference frames. In: Sansò F (ed) V Hotine-Marussi symposium on mathematical geodesy, International Association of Geodesy Symposia, vol 127. Springer, Berlin, pp 164–173. doi:10.1007/978-3-662-10735-5_22

    Chapter  Google Scholar 

  • Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. In: Sünkel H, Baker T (eds) Sea surface topography and the geoid, International Association of Geodesy Symposia, vol 104. Springer, Berlin, pp 116–128. doi:10.1007/978-1-4684-7098-7_14

    Chapter  Google Scholar 

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geod 81(2):121–136. doi:10.1007/s00190-006-0094-0

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W. H Freeman & Co, San Francisco, USA

    Google Scholar 

  • Hirt C (2013) RTM gravity forward-modeling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone. Mar Geod 36(2):183–202. doi:10.1080/01490419.2013.779334

    Article  Google Scholar 

  • Hirt C, Featherstone WE, Marti U (2010) Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J Geod 84(9):557–567. doi:10.1007/s00190-010-0395-1

    Article  Google Scholar 

  • Hirt C, Kuhn M (2014) Band-limited topographic mass distribution generates full-spectrum gravity field: gravity forward modeling in the spectral and spatial domains revisited. J Geophys Res 119(4):3646–3661. doi:10.1002/2013JB010900

    Article  Google Scholar 

  • Hirt C, Rexer M (2015) Earth 2014: 1 arc-min shape, topography, bedrock and ice-sheet models - available as gridded data and degree-10,800 spherical harmonics. Int J Appl Earth Obs Geoinform 39:103–112. doi:10.1016/j.jag.2015.03.001, http://ddfe.curtin.edu.au/models/Earth2014

  • Höggerl N (1986) Die Ausgleichung des österreichischen Präzisionsnivellementnetzes. Österreichische Z Vermess und Photogramm 74(4):216–249

    Google Scholar 

  • Höggerl N, Ruess D (2004) The new orthometric height system in Austria. In: Proceedings of the EUREF 2003 Symposium, no. 13 in EUREF Publication, Mitteilungen des Bundesamtes für Kartographie und Geodäsie, vol. 33, pp 202–206

  • Holmes SA, Pavlis NK (2006) Spherical harmonic synthesis software harmonic_synth_v02.f. http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/new_egm.html

  • Huang J, Véronneau M (2013) Canadian gravimetric geoid model 2010. J Geod 87(8):771–790. doi:10.1007/s00190-013-0645-0

    Article  Google Scholar 

  • IAG Resolutions (2015) IAG resolution (No. 1) for the definition and realization of an International Height Reference System (IHRS). International Association of Geodesy, http://iag.dgfi.tum.de/fileadmin/IAG-docs/IAG_Resolutions_2015

  • IERS Conventions (2010) In: Petit G, Luzum B (eds) IERS Technical Note, no. 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany

  • Ihde J (1995) Geoid determination by GPS and levelling. In: Sünkel H, Marson I (eds) Gravity and geoid, International Association of Geodesy Symposia, vol 113. Springer, Berlin, pp 519–528. doi:10.1007/978-3-642-79721-7_55

    Google Scholar 

  • Ihde J, Sánchez L (2005) A unified global height reference system as a basis for IGGOS. J Geodyn 40(4–5):400–413. doi:10.1016/j.jog.2005.06.015

    Article  Google Scholar 

  • Klokočník J, Wagner CA, Kostelecký J, Bezděk A, Novák P, McAdoo D (2008) Variations in the accuracy of gravity recovery due to ground track variability: GRACE, CHAMP, and GOCE. J Geod 82(12):917–927. doi:10.1007/s00190-008-0222-0

    Article  Google Scholar 

  • Kotsakis C, Katsambalos K, Ampatzidis D (2012) Estimation of the zero-height geopotential level \(W_0^\text{ LVD }\) in a local vertical datum from inversion of co-located GPS, leveling and geoid heights: a case study in the Hellenic islands. J Geod 86(6):423–439. doi:10.1007/s00190-011-0530-7

    Article  Google Scholar 

  • Kutterer H, Neilan R (2016) Global geodetic observing system (GGOS). The Geodesists Handbook 2016. J Geod 90(10):1079–1094. doi:10.1007/s00190-016-0948-z

    Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. Technical report 1998-206861, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA. http://ntrs.nasa.gov/search.jsp?R=19980218814

  • Luz RT, Bosch W, de Freitas SRC, Heck B, Dalazoana R (2009a) Evaluating the Brazilian vertical datum through improved coastal satellite altimetry data. In: Sideris MG (ed) Observing our changing Earth, International Association of Geodesy Symposia, vol 133. Springer, Berlin, pp 735–741. doi:10.1007/978-3-540-85426-5_84

    Chapter  Google Scholar 

  • Luz RT, de Freitas SRC, Heck B, Bosch W (2009b) Challenges and first results towards the realization of a consistent height system in Brazil. In: Drewes H (ed) Geodetic reference frames, International Association of Geodesy Symposia, vol 134. Springer, Berlin, pp 291–296. doi:10.1007/978-3-642-00860-3_45

    Chapter  Google Scholar 

  • Luz RT, Guimarães VM, Rodrigues AC, Correia JD (2002) Brazilian first order levelling network. In: Drewes H, Dodson AH, Fortes LPS, Sánchez L, Sandoval P (eds) Vertical reference systems, International Association of Geodesy Symposia, vol 124. Springer, Berlin, pp 20–22. doi:10.1007/978-3-662-04683-8_5

    Google Scholar 

  • Mäkinen J, Ihde J (2009) The permanent tide in height systems. In: Sideris MG (ed) Observing our changing Earth, International Association of Geodesy Symposia, vol 133. Springer, Berlin, pp 81–87. doi:10.1007/978-3-540-85426-5_10

    Chapter  Google Scholar 

  • Mayer-Gürr T, Zehentner N, Klinger B, Kvas A (2014) ITSG-Grace2014: a new GRACE gravity field release computed in Graz. https://pure.tugraz.at/portal/files/3412370/2014-09-30_mayer-guerr_etal_ITG-Grace2014_GSTM_Potsdam

  • Mayer-Gürr T, Pail R, Gruber T, Fecher T, Rexer M, Schuh WD, Kusche J, Brockmann JM, Rieser D, Zehentner N, Kvas A, Klinger B, O B, Höck E, Krauss S, Jäggi A (2015) The combined satellite gravity field model GOCO05s. Geophysical Research Abstracts, vol 17, EGU2015-12364

  • Montecino HD, de Freitas SRC (2014) Strategies for connecting Imbituba and Santana Brazilian datums based on satellite gravimetry and residual terrain model. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet, International Association of Geodesy Symposia, vol 139. Springer, Berlin, pp 543–549. doi:10.1007/978-3-642-37222-3_72

    Chapter  Google Scholar 

  • Moritz H (1980) Geodetic reference system 1980. Bull Géod 54(3):395–405. doi:10.1007/BF02521480

    Article  Google Scholar 

  • Pail R, Bruinsma SL, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843. doi:10.1007/s00190-011-0467-x

    Article  Google Scholar 

  • Pail R, Goiginger H, Schuh WD, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37(20):L20314. doi:10.1029/2010GL044906

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008. J Geophys Res 117:B04406. doi:10.1029/2011JB008916

    Article  Google Scholar 

  • Rapp RH (1983) The need and prospects for a world vertical datum. In: Proceedings of the 18th IAG General Assembly, International Association of Geodesy Symposia, vol 2, pp 432–445

  • Rapp RH, Nerem RS, Shum C, Klosko SM, Williamson RG (1991) Consideration of permanent tidal deformation in the orbit determination and data analysis for the Topex/Poseidon mission. Technical report NASA-TM-100775, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA. http://ntrs.nasa.gov/search.jsp?R=19910021305

  • Ruess D, Mitterschiffthaler P (2015) Rezente Höhenänderungen in Österreich abgeleitet aus geodätischen Wiederholungsmessungen. In: Hanke K, Weinold T (eds) 19. Internationale Woche. Wichmann-Verlag, Heidelberg, pp 111–123

    Google Scholar 

  • Rülke A, Liebsch G, Sacher M, Schäfer U, Schirmer U, Ihde J (2012) Unification of European height system realizations. J Geod Sci 2(4):343–354. doi:10.2478/v10156-011-0048-1

    Google Scholar 

  • Rülke A, Liebsch G, Sacher M, Schäfer U, Ihde J, Woodworth PL (2016) Practical aspects of the unification of height system realizations in Europe. In: Rizos C, Willis P (eds) IAG 150 years, International Association of Geodesy Symposia, vol 143. Springer, Berlin, pp 367–373. doi:10.1007/1345_2015_168

    Google Scholar 

  • Rummel R (2002) Global unification of height systems and GOCE. In: Sideris MG (ed) Gravity, geoid and geodynamics 2000, International Association of Geodesy Symposia, vol 123. Springer, Berlin, pp 13–20. doi:10.1007/978-3-662-04827-6_3

    Chapter  Google Scholar 

  • Rummel R, Teunissen P (1988) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62(4):477–498. doi:10.1007/BF02520239

    Article  Google Scholar 

  • Rummel R, Yi W, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85(11):777–790. doi:10.1007/s00190-011-0500-0

    Article  Google Scholar 

  • Sacher M, Ihde J, Liebsch G, Mäkinen J (2009) EVRF2007 as realization of the European vertical reference system. Bollett di Geod Sci Affin 68(1):35–50

    Google Scholar 

  • Sánchez L (2009) Strategy to establish a global vertical reference system. In: Drewes H (ed) Geodetic reference frames, International Association of Geodesy Symposia, vol 134. Springer, Berlin, pp 273–278. doi:10.1007/978-3-642-00860-3_42

    Chapter  Google Scholar 

  • Sánchez L (2015) Ein einheitliches vertikales Referenzsystem für Südamerika im Rahmen eines globalen Höhensystems. Deutsche Geodätische Kommission, Reihe C, no. 748. Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C. H. Beck. http://www.dgk.badw.de.devweb.mwn.de/fileadmin/docs/c-748.pdf

  • Sansò F, Venuti G (2002) The height datum/geodetic datum problem. Geophys J Int 149(3):768–775. doi:10.1046/j.1365-246X.2002.01680.x

    Google Scholar 

  • Sjöberg L (2011) On the definition and realization of a global vertical datum. J Geod Sci 1(2):154–157. doi:10.2478/v10156-010-0018-z

    Google Scholar 

  • Šprlák M, Gerlach C, Pettersen BR (2015) Validation of GOCE global gravitational field models in Norway. In: Huang J, Reguzzoni M, Gruber T (eds) Assessment of GOCE geopotential models, Newton’s Bulletin, no. 5. International Association of Geodesy and International Gravity Field Service, pp 13–24. http://www.isgeoid.polimi.it/Newton/Newton_5/03_Sprlak_13_24.html

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505. doi:10.1126/science.1099192

    Article  Google Scholar 

  • Voigt C, Denker H (2015) Validation of GOCE gravity field models in Germany. In: Huang J, Reguzzoni M, Gruber T (eds) Assessment of GOCE geopotential models, Newton’s Bulletin, no. 5. International Association of Geodesy and International Gravity Field Service, pp 37–48. http://www.isgeoid.polimi.it/Newton/Newton_5/05_Voigt_37_48.html

  • Weber D (1994) Das neue gesamtdeutsche Haupthöhennetz DHHN 92. Allg Vermess Nachr 101(5):179–193

    Google Scholar 

  • Wolf H (1974) Über die Einführung von Normalhöhen. Z Vermess 99:1–5

    Google Scholar 

  • Woodworth PL, Hughes CW, Bingham RJ, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci 2(4):302–318. doi:10.2478/v10156-012-0004-8

    Google Scholar 

  • Xu P (1992) A quality investigation of global vertical datum connection. Geophys J Int 110(2):361–370. doi:10.1111/j.1365-246X.1992.tb00880.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the German Research Foundation (DFG) under Grant Number HE1433/20-2. Furthermore, we would like to thank the German Federal Agency for Cartography and Geodesy (BKG), the Austrian Federal Office for Metrology and Surveying (BEV), and the Brazilian Institute of Geography and Statistics (IBGE) for kindly providing the GNSS/leveling data sets. Finally, two anonymous reviewers as well as the Editor-in-Chief are acknowledged for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Grombein.

Appendix

Appendix

In addition to the results presented for the TIM R5 model in Fig. 6 (Sect. 5.1), this appendix provides corresponding plots for the DIR R5 and GOCO05s model as displayed in Figs. 8 and 9, respectively. Furthermore, as a supplement to Fig. 7 (Sect. 5.2), the spatial distributions of the least squares residuals are displayed in Fig. 10.

Fig. 8
figure 8

Results for different combinations of DIR R5 and EGM2008 with respect to the used SH degree of combination \(N\) and the transition bandwidth \(dN\). The achieved STD values of the residuals \(v_j\) are shown in the left column, while the estimated height datum offsets \(\delta H\) are presented in the right column. The different results for the three study areas Germany, Austria, and Brazil are displayed in the first, second, and third row, respectively. Note the different scaling of the color bars

Fig. 9
figure 9

Results for different combinations of GOCO05s and EGM2008 with respect to the used SH degree of combination \(N\) and the transition bandwidth \(dN\). The achieved STD values of the residuals \(v_j\) are shown in the left column, while the estimated height datum offsets \(\delta H\) are presented in the right column. The different results for the three study areas Germany, Austria, and Brazil are displayed in the first, second, and third row, respectively. Note the different scaling of the color bars

Fig. 10
figure 10

Least squares adjusted residuals \(v_j\) at the respective GNSS/leveling benchmarks \(P_j\), shown for the topo and non-topo scenario (right and left column, respectively), and the three study areas Germany, Austria, and Brazil (first, second, and third row, respectively). Note the different scaling of the color bars

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grombein, T., Seitz, K. & Heck, B. On High-Frequency Topography-Implied Gravity Signals for a Height System Unification Using GOCE-Based Global Geopotential Models. Surv Geophys 38, 443–477 (2017). https://doi.org/10.1007/s10712-016-9400-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-016-9400-4

Keywords

Navigation