Skip to main content

Advertisement

Log in

GOCE gravitational gradiometry

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

GOCE is the first gravitational gradiometry satellite mission. Gravitational gradiometry is the measurement of the second derivatives of the gravitational potential. The nine derivatives form a 3 × 3 matrix, which in geodesy is referred to as Marussi tensor. From the basic properties of the gravitational field, it follows that the matrix is symmetric and trace free. The latter property corresponds to Laplace equation, which gives the theoretical foundation of its representation in terms of spherical harmonic or Fourier series. At the same time, it provides the most powerful quality check of the actual measured gradients. GOCE gradiometry is based on the principle of differential accelerometry. As the satellite carries out a rotational motion in space, the accelerometer differences contain angular effects that must be removed. The GOCE gradiometer provides the components V xx , V yy , V zz and V xz with high precision, while the components V xy and V yz are of low precision, all expressed in the gradiometer reference frame. The best performance is achieved inside the measurement band from 5 × 10–3 to 0.1 Hz. At lower frequencies, the noise increases with 1/f and is superimposed by cyclic distortions, which are modulated from the orbit and attitude motion into the gradient measurements. Global maps with the individual components show typical patterns related to topographic and tectonic features. The maps are separated into those for ascending and those for descending tracks as the components are expressed in the instrument frame. All results are derived from the measurements of the period from November to December 2009. While the components V xx and V yy reach a noise level of about \({10\;\rm{\frac{mE}{\sqrt{Hz}}}}\), that of V zz and V xz is about \({20\; \rm{\frac{mE}{\sqrt{Hz}}}}\). The cause of the latter’s higher noise is not yet understood. This is also the reason why the deviation from the Laplace condition is at the \({20 \;\rm{\frac{mE}{\sqrt{Hz}}}}\) level instead of the originally planned \({11\;\rm{\frac{mE}{\sqrt{Hz}}}}\). Each additional measurement cycle will improve the accuracy and to a smaller extent also the resolution of the spherical harmonic coefficients derived from the measured gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balmino G, Barlier F, Bernard A, Bouzat C, Riviere G, Runavot J (1981) GRADIO gradiométrie par satellite. Toulouse

  • Baur O (2007) Die Invariantendarstellung in der Satellitengradiometrie: theoretische Betrachtungen und numerische Realisierung anhand der Fallstudie GOCE. PhD thesis, Universität Stuttgart

  • Baur O, Sneeuw N, Grafarend EW (2007) Methodology and use of tensor invariants for satellite gravity gradiometry. J Geod 82(4–5): 279–293. doi:10.1007/s00190-007-0178-5

    Google Scholar 

  • Bouman J, Fiorot S, Fuchs M, Gruber T, Schrama E, Tscherning CC, Veicherts M, Visser P (2011) GOCE gravitational gradients along the orbit. J Geod. doi:10.1007/s00190-011-0464-0

  • Brockmann J, Kargoll B, Krasbutter I, Schuh WD, Wermuth M (2010) GOCE data analysis: from calibrated measurements to the global earth gravity field. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via Geodetic-Geophysical Space Techniques. Springer, Berlin, pp 213–229. doi:10.1007/978-3-642-10228-8_17

    Chapter  Google Scholar 

  • Carroll J, Savet P (1959) Gravity difference detection. Aerosp Eng:44–47

  • Cesare S (2008) GOCE—Performance requirements and budgets for the gradiometrc mission. project report, ThalesAleniaSpace, Torino

  • Chan HA, Moody MV, Paik HJ (1987) Superconducting gravity gradiometer for sensitive gravity measurements. II. experiment. Phys Rev D 35(12): 3572. doi:10.1103/PhysRevD.35.3572

    Article  Google Scholar 

  • Emiliani C (1992) Planet earth: cosmology, geology, and the evolution of life and environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Eötvös RV (1906) Bestimmung der Gradienten der Schwerkraft und ihrer Niveauflächen mit Hilfe der Drehwaage. vol 1. Verhandlungen der 15. allgemeinen Konferenz der Internationalen Erdmessung, Budapest, pp 337–396

  • European Space Agency (1999) Gravity field and steady-state ocean circulation mission, report for mission selection of the four candidate earth explorer missions. Tech. rep., ESA SP-1233(1), ESA publications division, Noordwijk

  • Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B (2011) Mission design, operation and exploitation of the Gravity field and steady-state Ocean Circulation Explorer. J Geod. doi:10.1007/s00190-011-0498-3

  • Forward RL (1974) Review of artificial satellite gravity gradiometer techniques for geodesy. In: Veis G (ed) The Use of Artificial Satellites for Geodesy and Geodynamics. The National Technical University of Athens, Athens, pp 157–192

  • Gruber T, Abrikosov O, Hugentobler U (2010a) GOCE Standards. GO-TN-HPF-GS-0111, Issue 3.2

  • Gruber T, Rummel R, Abrikosov O, van Hees R (2010b) GOCE Level 2 product data handbook. GO-MA-HPF-GS-0110, Issue 4.2

  • Jekeli C (1988) The gravity gradiometer survey system (GGSS). Eos, Trans Am Geophys Union 69(8):105 & 116–117

    Google Scholar 

  • Johannessen JA, Balmino G, Provost CL, Rummel R, Sabadini R, Sünkel H, Tscherning C, Visser P, Woodworth P, Hughes C, Legrand P, Sneeuw N, Perosanz F, Aguirre-Martinez M, Rebhan H, Drinkwater M (2003) The European gravity field and steady-state ocean circulation explorer satellite mission: Its impact on geophysics. Surv Geophys 24(4):339–386. doi:10.1023/B:GEOP.0000004264.04667.5e, https://bora.uib.no/handle/1956/3796

  • Jung K (1961) Schwerkraftverfahren in der angewandten Geophysik. Akademische Verlags Gesellschaft, Leipzig

    Google Scholar 

  • Lühr H, Rentz S, Ritter P, Liu H, Häusler K (2007) Average thermospheric wind patterns over the polar regions, as observed by CHAMP. Ann Geophys 25: 1093–1101

    Article  Google Scholar 

  • Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geod 77(1–2): 41–49. doi:10.1007/s00190-002-0288-z

    Article  Google Scholar 

  • Marussi A (1985) Intrinsic geodesy. Translated from the Italian by Reilly WI. Springer, Berlin

    Google Scholar 

  • McGuirk JM, Foster GT, Fixler JB, Snadden MJ, Kasevich MA (2002) Sensitive absolute-gravity gradiometry using atom interferometry. Phys Rev A 65(3):033,608, doi:10.1103/PhysRevA.65.033608

  • Moritz H (1980) Advanced physical geodesy. Herbert Wichmann Verlag, Karlsruhe

    Google Scholar 

  • Müller J, Jarecki F, Wolf I, Brieden P (2010) Quality evaluation of GOCE gradients. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via Geodetic-Geophysical Space Techniques. Springer, Berlin., pp 265–276. doi:10.1007/978-3-642-10228-8_21

    Chapter  Google Scholar 

  • Ohanian HC, Ruffini R (1994) Gravitation and spacetime, 2nd edn. Norton & Company, New York

    Google Scholar 

  • Oppenheim AV, Schafer RW (1989) Digital signal processing. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò; F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod. doi:10.1007/s100190-011-0467-x

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM2008, Presented to EGU-2008, Vienna, Austria

  • Pedersen LB, Rasmussen TM (1990) The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps. Geophysics 55(12): 1558–1566. doi:10.1190/1.1442807

    Article  Google Scholar 

  • Rummel R (1986) Satellite gradiometry. In: Sünkel H (eds) Mathematical and numerical techniques in physical geodesy, lecture notes in earth sciences,7. Springer, Berlin, pp 317–363. doi:10.1007/BFb0010135

    Google Scholar 

  • Rummel R (1997) Spherical spectral properties of the earth’s gravitational potential and its first and second derivatives. In: Sansò; F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, lecture notes in earth sciences, vol 65. Springer, Berlin, pp 359–404. doi:10.1007/BFb0011710

    Chapter  Google Scholar 

  • Rummel R, Rapp R (1976) The influence of the atmosphere on geoid and potential coefficient determinations from gravity data. J Geophys Res 81(32): 5639–5642. doi:10.1029/JB081i032p05639

    Article  Google Scholar 

  • Rummel R, van Gelderen M (1992) Spectral analysis of the full gravity tensor. Geophys J Int 111(1): 159–169. doi:10.1111/j.1365-246X.1992.tb00562.x

    Article  Google Scholar 

  • Schreiner M (1994) Tensor spherical harmonics and their application in satellite gradiometry. PhD thesis, University of Kaiserslautern

  • Schuh WD (2002) Improved modeling of SGG-data sets by advanced filter strategies. In: ESA-Project (ed): ESA-Project “From Eötvös to mGal+”, WP 2, Final-Report

  • Stummer C, Fecher T, Pail R (2011) Alternative method for angular rate determination within the GOCE gradiometer processing. J Geod. doi:10.1007/s00190-011-0461-3

  • Tsuboi C (1983) Gravity. George Allen & Unwin, London

    Google Scholar 

  • Watson D (1992) Contouring: a guide to the analysis and display of spatial sata, 1st edn. Pergamon, Oxford

    Google Scholar 

  • Wells W (1984) Spaceborne gravity gradiometers. In: Proc. NASA GSFC workshop, NASA conference publication 2305

  • While J, Jackson A, Smit D, Biegert E (2006) Spectral analysis of gravity gradiometry profiles. Geophysics 71(1): J11–J22. doi:10.1190/1.2169848

    Article  Google Scholar 

  • Yu J, Zhao D (2010) The gravitational gradient tensor’s invariants and the related boundary conditions. Sci China Earth Sci 53(5): 781–790. doi:10.1007/s11430-010-0014-2

    Article  Google Scholar 

  • Yu N, Kohel J, Kellogg J, Maleki L (2006) Development of an atom-interferometer gravity gradiometer for gravity measurement from space. Appl Phys B 84(4): 647–652. doi:10.1007/s00340-006-2376-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyong Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rummel, R., Yi, W. & Stummer, C. GOCE gravitational gradiometry. J Geod 85, 777–790 (2011). https://doi.org/10.1007/s00190-011-0500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0500-0

Keywords

Navigation