Skip to main content
Log in

Canadian gravimetric geoid model 2010

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A new gravimetric geoid model, Canadian Gravimetric Geoid 2010 (CGG2010), has been developed to upgrade the previous geoid model CGG2005. CGG2010 represents the separation between the reference ellipsoid of GRS80 and the Earth’s equipotential surface of \(W_0=62{,}636{,}855.69~\mathrm{m}^2\mathrm{s}^{-2}\). The Stokes–Helmert method has been re-formulated for the determination of CGG2010 by a new Stokes kernel modification. It reduces the effect of the systematic error in the Canadian terrestrial gravity data on the geoid to the level below 2 cm from about 20 cm using other existing modification techniques, and renders a smooth spectral combination of the satellite and terrestrial gravity data. The long wavelength components of CGG2010 include the GOCE contribution contained in a combined GRACE and GOCE geopotential model: GOCO01S, which ranges from \(-20.1\) to 16.7 cm with an RMS of 2.9 cm. Improvement has been also achieved through the refinement of geoid modelling procedure and the use of new data. (1) The downward continuation effect has been accounted accurately ranging from \(-22.1\) to 16.5 cm with an RMS of 0.9 cm. (2) The geoid residual from the Stokes integral is reduced to 4 cm in RMS by the use of an ultra-high degree spherical harmonic representation of global elevation model for deriving the reference Helmert field in conjunction with a derived global geopotential model. (3) The Canadian gravimetric geoid model is published for the first time with associated error estimates. In addition, CGG2010 includes the new marine gravity data, ArcGP gravity grids, and the new Canadian Digital Elevation Data (CDED) 1:50K. CGG2010 is compared to GPS-levelling data in Canada. The standard deviations are estimated to vary from 2 to 10 cm with the largest error in the mountainous areas of western Canada. We demonstrate its improvement over the previous models CGG2005 and EGM2008.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ACE:

Altimeter corrected elevations, De Montfort University, UK

ASTER:

Advanced spaceborne thermal emission and Reflection radiometer

CDED:

Canadian digital elevation data

DC:

Downward continuation

CGG2005:

Canadian gravimetric geoid 2005

CGG2010:

Canadian gravimetric geoid 2010

DBK:

Degree-banded Stokes kernel

DEM:

Digital elevation model

DTE:

Direct topographical effect

EGM2008:

Earth geopotential model 2008

GGM:

Global geopotential model

GOCE:

Gravity field and steady-state ocean circulation explorer

GPSBM:

GPS on benchmark

GRACE:

Gravity recovery and climate experiment

GRS80:

Geodetic reference system 1980

MDBK:

Modified degree-banded Stokes kernel

MSST:

Mean sea surface topography

NED:

National elevation data, USGS, USA

NGA:

National Geospatial-Intelligence Agency, USA

NGS:

National Geodetic Survey, USA

PCG08I:

Preliminary Canadian geoid 2008 I

PITE:

Primary indirect topographical effect

RCR:

Remove-compute-restore

RMS:

Root of mean squares

SH:

Spherical harmonic

SRTM:

Shuttle radar topography mission

USGS:

United States geological survey

References

  • Andersen O, Knudsen P, Berry P (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84:191–199. doi:10.1007/s00190-009-0355-9

    Google Scholar 

  • Denker H, Behrend D, Torge W (1994) European gravimetric geoid: status report 1994. In: International association of geodesy symposia, vol 113. Springer, Berlin, pp 423–433

  • Denker H, Barriot J-P, Barzaghi R, Fairhead D, Forsberg R, Ihde J, Kenyeres A, Marti U, Sarrailh M, Tziavos IN (2009) The development of the European gravimetric geoid model EGG07. In: International association of geodesy symposia, vol 133. Springer, Berlin, pp 177–185

  • Featherstone WE, Kirby JF, Hirt C, Filmer MS, Claessens SJ, Brown NJ, Hu G, Johnston GM (2011) The AUSGeoid09 model of the Australian height datum. J Geod 85:133–150. doi:10.1007/s00190-010-0422-2

    Article  Google Scholar 

  • Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer KH, Biancale R, Lemoine JM, Barthelmes F, Bruinsma S, Koenig R, Meyer U (2008) EIGEN-GL05C-a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. General Assembly European Geosciences Union (Vienna, Austria 2008), Geophysical Research Abstracts, vol 10. Abstract No. EGU2008-A-06944

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman, San Francisco

    Google Scholar 

  • Heck B (2003) On Helmert’s methods of condensation. J Geod 77:155–170

    Article  Google Scholar 

  • Higginson S, Thompson KR, Huang J, Véronneau M, Wright DG (2011) The mean surface circulation of the North Atlantic subpolar gyre: a comparison of estimates derived from new gravity and oceanographic measurements. J. Geophys. Res. 116:C08016. doi:10.1029/2010JC006877

    Article  Google Scholar 

  • Higginson S (2012) Mapping and understanding the mean surface circulation of the North Atlantic: insights from new geodetic and oceanographic measurements. Dalhousie University Halifax, Nova Scotia, PHD dissertation

  • Holdahl RH, Strange WE, Harris RJ (1986) Empirical calibration of ZEISS NI-1 instruments to account for magnetic errors. NOAA Technical Memorandum NOS NGS-45

  • Huang J, Véronneau M, Pagiatakis SD (2003) On the ellipsoidal correction to the spherical Stokes solution of the gravimetric geoid. J Geod 77:171–181

    Article  Google Scholar 

  • Huang J, Véronneau M (2005) Application of downward-continuation in gravimetric geoid modeling: case studies in Western Canada. J Geod 79:135–145

    Article  Google Scholar 

  • Huang J, Fotopoulos G, Cheng MK, Véronneau M, Sideris MG (2007) On the estimation of the regional geoid error in Canada. In: International association of geodesy symposia, vol 130. Springer, Berlin, pp 272–279

  • Huang J, Véronneau M, Mainville A (2008) Assessment of systematic errors in the surface gravity anomalies over North America using the GRACE gravity model. Geophys J Int 175:46–54. doi:10.1111/j.1365-246X.2008.03924.x

    Article  Google Scholar 

  • Huang J, Véronneau M (2009) Evaluation of the GRACE-based global gravity models in Canada. Newton’s Bull 4:66–72

    Google Scholar 

  • Ince ES, Sideris MG, Huang J, Véronneau M (2012) Assessment of the GOCE global gravity models in Canada. Geomatica 66(2): 387–399

    Google Scholar 

  • Jekeli C (1981) The downward continuation to the Earth’s surface of truncated spherical and ellipsoidal harmonic series of the gravity and height anomalies. Report No 323, Department of Geodetic Science and Surveying, The Ohio State University, Columbus

  • Li JC (2012) The recent Chinese terrestrial digital height datum model: gravimetric quasi-geoid model CNGG2011. Acta Geodaetica et Cartographics Sinica 41(5):651–660,669

    Google Scholar 

  • Martinec Z (1998) Boundary value problems for gravimetric determination in a precise geoid. Lecture notes in earth sciences, vol 73. Springer, Berlin

  • Mainville A, Forsberg R, Sideris MG (1992) Global positioning aystem testing of geoids computed from geopotential models and local gravity data: a case study. J Geophys Res 97(B7):11137–11147. doi:10.1029/92JB00352

    Google Scholar 

  • Mayer-Gürr T, Eicker A, Kurtenbach E, Ilk KH (2010) ITGGRACE: Global static and temporal gravity field models from GRACE data. In: Flechtner F et al (ed.) System earth via geodetic geophysical space techniques. Springer, New York, pp 159–168. doi:10.1007/978-3-642-10228-8-13

  • Moritz H (1980) Geodetic reference system 1980. Bull Geod 54(3):395–405

    Article  Google Scholar 

  • Novák P (2000) Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem. Technical Report 207, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton

  • Novák P, Grafarend EW (2005) Ellipsoidal representation of the topographical potential and its vertical gradient. J Geod 78:691–706. doi:10.1007/s00190-005-0435-4

    Article  Google Scholar 

  • Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010a) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi:10.1029/2010GL044906

    Article  Google Scholar 

  • Pail R, Goiginger H, Mayrhofer R, Schuh W-D, Brockmann JM, Krasbutter I, Höck E, Fecher T (2010b) Global gravity field model derived from orbit and gradiometry data applying the time-wise method. Paper presented at ESA living planet symposium, European Space Agency, Bergen, Norway

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JF (2008) An earth gravitational model to degree 2160: EGM2008. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18 (2008)

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. doi:10.1029/2011JB008916

    Article  Google Scholar 

  • Saleh J, Li X, Wang Y, Roman DR, Smith DA (2012) Error analysis of the NGS surface gravity database. J Geod. doi:10.1007/s00190-012-0589-9

  • Sideris MG, She BB (1995) A new, high-resolution geoid for Canada and part of the US by the 1D-FFT method. Bull Géod 69:92–108

    Article  Google Scholar 

  • Sjöberg LE (1991) Refined least squares modification of Stokes’s formula. Man Geod 16:367–375

    Google Scholar 

  • Thompson KR, Huang J, Véronneau M (2009) Mean surface topography of the northwest Atlantic: comparison of estimates based on satellite, terrestrial gravity, and oceanographic observations. J Geophys Res 114:C07015. doi:10.1029/2008JC004859

    Article  Google Scholar 

  • Vaníček P, Kleusberg A, Chang RG, Fashir H, Christou N, Hofman M, Kling T, Arsenault T (1986) The Canadian geoid. Technical Report 129, Department of Surveying Engineering, University of New Brunswick, P.O. Box 4400, Fredericton, NB, E3B 5A3, Canada

  • Vaníček P, Kleusberg A (1987) The Canadian geoid—Stokesian approach. Man Geod 12:86–98

    Google Scholar 

  • Vaníček P, Matinec Z (1994) The Stokes–Helmert scheme for the evaluation of a precise geoid. Man Geod 19:119–128

    Google Scholar 

  • Vaníček P, Kleusberg A, Martinec A, Sun W, Ong P, Najafi M, Vajda P, Harrie L, Tomàšek P, Ter Horst B (1995a) Compilation of a precise regional geoid. Final report on research done for the Geodetic Survey Division, Geomatics Sector, Natural Resources Canada, Ottawa, under a DSS Contract No 23244-1-4405/01-SS

  • Vaníček P, Najafi M, Martinec Z, Harrie L, Sjöberg LE (1995b) Higher-degree reference field in the generalized Stokes–Helmert scheme for geoid computation. J Geod 70:176–182. doi:10.1007/BF00943693

    Article  Google Scholar 

  • Vaníček P, Featherstone WE (1998) Performance of three types of Stokes’s kernel in the combined solution for the geoid. J Geod 72(12):684–697. doi:10.1007/s001900050209

    Article  Google Scholar 

  • Vaníček P, Huang J, Novák P, Pagiatakis SD, Véronneau M, Martinec Z, Featherstone WE (1999) Determination of the boundary values for the Stokes–Helmert problem. J Geod 73:180–192

    Article  Google Scholar 

  • Véronneau M, Mainville A (1992) Computation of a Canadian geoid model using the FFT technique to evaluate Stokes’ and Vening-Meinesz’ formulas in a planar approximation. Presented at the AGU–CGU–MSA Joint Spring Meeting, Montréal, Québec, May 12–16

  • Véronneau M (1997) The GSD95 geoid model for Canada. In: Proceedings of international symposium on gravity, geoid and marine geodesy, Tokyo, Japan, 1996, vol 117. Springer, Berlin, pp 573–580

  • Véronneau M (2001) The Canadian gravimetric geoid model of 2000 (CGG2000). Geodetic Survey Division, Natural Resources Canada, Ottawa, Canada

  • Véronneau M, Huang J (2007) The Canadian Gravimetric Geoid Model 2005 (CGG2005). Geodetic Survey Division, CCRS, Natural Resources Canada, Ottawa, Canada

  • Véronneau M (2011) Adjustment of levelling data in Canada: Nov07. Geodetic Survey Division, CCRS, Natural Resources Canada, Ottawa, Canada

  • Véronneau M (2013) The Helmert gravity grid used for CGG2010. Geodetic Survey Division, CCRS, Natural Resources Canada, Ottawa, Canada

  • Wang YM (2009) Investigation of the topographic effect by using high degree spherical harmonic expansion. IAG 2009 Scientific Assembly, Buenos Aires, Argentine. August 31–September 4, 2009

  • Wang YM, Saleh J, Li X, Roman DR (2011) The US Gravimetric Geoid of 2009 (USGG2009): model development of evaluation. J Geod. doi:10.1007/s00190-011-0506-7

  • Wang YM (2011) Precise computation of the direct and indirect topographic effects of Helmert’s 2nd method of condensation using SRTM30 digital elevation model. J Geod Sci 1(4):305–313. doi:10.2478/v10156-011-0009-8

    Google Scholar 

  • Wenzel HG (1982) Geoid computation by least-squares spectral combination using integration kernels. In: Nakagawa I, Kasahara K, Tanaka T (eds) Proceedings of IAG general meeting, Tokyo, The Geodetic Society of Japan, pp 438–453

  • Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. Eos Trans AGU 79(47):579. doi:10.1029/98EO00426

    Article  Google Scholar 

  • Wong L, Gore R (1969) Accuracy of geoid heights from modified Stokes kernel. Geophys J R Astron Soc 18:81–91

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Keith Thompson and Dr. Simon Higginson from Dalhousie University for their continuous collaboration, and Dr. Yanming Wang from the US National Geodetic Survey for providing the spherical harmonic models of DEM, and constructive discussions. We also thank Dr. Jiancheng Li in Wuhan University and his group for interesting discussions. We are grateful to Dr. Roland Klees, Dr. Chris Jekeli and the three anonymous reviewers for their time and helpful suggestions for improvement. Mr. Pierre Héroux and Dr. Calvin Klatt from Geodetic Survey Division, Canada Centre for Remote Sensing, and Dr. Xiaopeng Li from the US National Geodetic Survey, have reviewed and commented the original draft of this manuscript. The Generic Mapping Tools (GMT) (Wessel and Smith 1998) has been used to prepare a number of figures in this work. This is ESS contribution 20120314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Huang.

Appendices

Appendix A: The modified Stokes kernel

A general form of the modified Stokes kernel can be written as follows

$$\begin{aligned} S_\mathrm{M}(\psi , \psi _0) = \sum ^{\infty }_{n=2}\alpha _n(\psi _0){\frac{2n+1}{n-1}P_n({\cos }\,{\psi })} \end{aligned}$$
(20)

where \(\alpha _n\) are called the SH degree-dependent spectral transfer coefficients (Wenzel 1982). For the truncated Stokes integration over a spherical cap, we can re-write the modified kernel in Eq. (20) as

$$\begin{aligned} {\overline{S}}_\mathrm{M}(\psi , \psi _0) = {\left\{ \begin{array}{ll} S_\mathrm{M}(\psi ), &{} 0 \le \psi \le \psi _0, \\ 0, &{} \psi _0 < \psi \le \pi . \end{array}\right. } \end{aligned}$$
(21)

Equation (21) can be expanded into the following Legendre polynomials

$$\begin{aligned} {\overline{S}}_\mathrm{M}(\psi , \psi _0) = -\beta _0(\psi _0) + \sum ^{\infty }_{n=2}\beta _n(\psi _0){\frac{2n+1}{n-1}P_n({\cos }\,{\psi })}\nonumber \\ \end{aligned}$$
(22)

where

$$\begin{aligned} \beta _n(\psi _0)=\alpha _n(\psi _0)-\frac{n-1}{2}Q^\mathrm{M}_n(\psi _0) \end{aligned}$$
(23)

\(\beta _n\) are called the effective spectral transfer coefficients.

$$\begin{aligned} Q^\mathrm{M}_n(\psi _0)=\int ^{\pi }_{\psi _0} S_\mathrm{M}(\psi )P_n({\cos }\,{\psi })\sin \,{\psi }~\mathrm{d}\psi \end{aligned}$$
(24)

Using Eq. (21), the geoid residual computed over the spherical cap can be mathematically expressed as

$$\begin{aligned} dN(\varOmega )=\frac{R}{4\pi \gamma }\int _{\sigma } {\overline{S}}_\mathrm{M}(\psi , \psi _0) d g(\varOmega ^{\prime })~\mathrm{d}\sigma \end{aligned}$$
(25)

where \(dg\) can be expanded into the SHs as

$$\begin{aligned} dg(\varOmega ^{\prime })=dg_0 + \sum ^{\infty }_{n=2}dg_n(\varOmega ^{\prime }) \end{aligned}$$
(26)

Substituting Eqs. (22) and (26) into Eq. (25), we arrive at

$$\begin{aligned} dN(\varOmega )=-\beta _0(\psi _0)R\frac{dg_0}{\gamma } + \frac{R}{\gamma }\sum ^{\infty }_{n=2}\beta _n\frac{dg_n(\varOmega )}{n-1} \end{aligned}$$
(27)

From Eq. (27), it is evident that the effective spectral transfer coefficients \(\beta _n\) act as weights applied to the SH components of the terrestrial gravity anomaly residual.

Appendix B: Direct topographical effect

Let \(t=H{/}R\), where \(H\) is the orthometric height and \(R\) is the mean radius of the Earth, the direct topographical mass potential effect (DTE) can be expressed as

$$\begin{aligned} \delta V_\mathrm{{DTE}}(r, \varOmega )&= V_\mathrm{A}(r, \varOmega ) - V_\mathrm{K}(r, \varOmega )\nonumber \\&= 2\pi G \rho R^2\sum ^{\infty }_{n=0}\frac{1}{2n+1} \left( \frac{R}{r}\right) ^{n+1}\nonumber \\&\quad \times \sum ^{n}_{m=-n} \overline{D}_{nm}\overline{Y}_{nm}({\varOmega }) \end{aligned}$$
(28)

where

$$\begin{aligned} \overline{D}_{nm}&= n(t^{2})_{nm} + \frac{(n+3)n}{3}(t^{3})_{nm}\nonumber \\&\quad +\frac{(n+2)(n+1)n}{12}(t^4)_{nm}\nonumber \\&\quad +\frac{2}{n+3}\sum ^{n+3}_{k=5}C^{n+3}_k(t^k)_{nm}\end{aligned}$$
(29)
$$\begin{aligned} (t^k)_{nm}&= \frac{1}{4\pi }\int _{\sigma } t^k{\overline{Y}}_{nm}({\varOmega ^{\prime }})~\mathrm{d}\sigma \end{aligned}$$
(30)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Véronneau, M. Canadian gravimetric geoid model 2010. J Geod 87, 771–790 (2013). https://doi.org/10.1007/s00190-013-0645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-013-0645-0

Keywords

Navigation